[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Travel-Time Maps: Linear Cartograms with Fixed Vertex Locations

  • Conference paper
Geographic Information Science (GIScience 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8728))

Included in the following conference series:

Abstract

Linear cartograms visualize travel times between locations, usually by deforming the underlying map such that Euclidean distance corresponds to travel time. We introduce an alternative model, where the map and the locations remain fixed, but edges are drawn as sinusoid curves. Now the travel time over a road corresponds to the length of the curve. Of course the curves might intersect if not placed carefully. We study the corresponding algorithmic problem and show that suitable placements can be computed efficiently. However, the problem of placing as many curves as possible in an ideal, centered position is NP-hard. We introduce three heuristics to optimize the number of centered curves and show how to create animated visualizations.

K. Buchin, A. van Goethem, and B. Speckmann are supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.207 (KB), no. 612.001.102 (AvG), and no. 639.023.208 (BS). M. Hoffmann is partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and SNF Project 20GG21-134306.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Robinson, A., Morrison, J., Muehrcke, P., Kimerling, J., Guptill, S.: Elements of cartography. John Wiley & Sons (1995)

    Google Scholar 

  2. Bies, S., van Kreveld, M.: Time-space maps from triangulations. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 511–516. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Cabello, S., Demaine, E., Rote, G.: Planar embeddings of graphs with specified edge lengths. Journal of Graph Algorithms and Applications 11(1), 259–276 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kaiser, C., Walsh, F., Farmer, C., Pozdnoukhov, A.: User-centric time-distance representation of road networks. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 85–99. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Shimizu, E., Inoue, R.: A new algorithm for distance cartogram construction. International Journal of Geographical Information Science 23(11), 1453–1470 (2009)

    Article  Google Scholar 

  6. Langlois, P., Denain, J.C.: Cartographie en anamorphose. Cybergeo: European Journal of Geography (1996)

    Google Scholar 

  7. Bouts, Q., Dwyer, T., Dykes, J., Speckmann, B., Riche, N., Carpendale, S., Goodwin, S., Liebman, A.: Visual encoding of dissimilarity data via topology preserving map deformation (in preparation, 2014)

    Google Scholar 

  8. Barequet, G., Goodrich, M., Riley, C.: Drawing planar graphs with large vertices and thick edges. Journal of Graph Algorithms and Applications 8(1), 3–20 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodrich, M., Wagner, C.: A framework for drawing planar graphs with curves and polylines. Journal of Algorithms 37(2), 399–421 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Efrat, A., Erten, C., Kobourov, S.: Fixed-location circular-arc drawing of planar graphs. Journal of Graph Algorithms and Applications 11(1), 145–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duncan, C., Eppstein, D., Goodrich, M., Kobourov, S., Nöllenburg, M.: Lombardi drawings of graphs. Journal of Graph Algorithms and Applications 16(1), 37–83 (2012)

    Article  MathSciNet  Google Scholar 

  12. Nielsen, C., Jackman, S., Birol, I., Jones, S.: Abyss-explorer: visualizing genome sequence assemblies. IEEE Transactions on Visualization and Computer Graphics 15(6), 881–888 (2009)

    Article  Google Scholar 

  13. Wolff, A., Strijk, T.: The map labeling bibliography (2009), http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

  14. Poon, C.K., Zhu, B., Chin, F.: A polynomial time solution for labeling a rectilinear map. Information Processing Letters 65(4), 201–207 (1998)

    Article  MathSciNet  Google Scholar 

  15. Strijk, T., van Kreveld, M.: Labeling a rectilinear map more efficiently. Information Processing Letters 69(1), 25–30 (1999)

    Article  MathSciNet  Google Scholar 

  16. Saux, E., Daniel, M.: Data reduction of polygonal curves using B-splines. Computer-Aided Design 31(8), 507–515 (1999)

    Article  MATH  Google Scholar 

  17. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halperin, D.: Arrangements. In: Handbook of Discrete and Computational Geometry. Chapman & Hall/CRC (2004)

    Google Scholar 

  19. Guibas, L., Hershberger, J., Mitchell, J., Snoeyink, J.: Approximating polygons and subdivisions with minimum-link paths. International Journal of Computational Geometry & Applications 3(4), 383–415 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fabrikant, S., Montello, D., Ruocco, M., Middleton, R.: The distance–similarity metaphor in network-display spatializations. Cartography and Geographic Information Science 31(4), 237–252 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Buchin, K., van Goethem, A., Hoffmann, M., van Kreveld, M., Speckmann, B. (2014). Travel-Time Maps: Linear Cartograms with Fixed Vertex Locations. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics