[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automated Failure Analysis in Model Checking Based on Data Mining

  • Conference paper
Model and Data Engineering (MEDI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8748))

Included in the following conference series:

Abstract

This paper presents an automated failure analysis approach based on data mining. It aims to ease and accelerate the debugging work in formal verification based on model checking if a safety property is not satisfied. Inspired by the Kullback-Leibler Divergence theory and the TF-IDF (Term Frequency - Inverse Document Frequency) measure, we propose a suspiciousness factor to rank potentially faulty transitions on the error traces in time Petri net models. This approach is illustrated using a best case execution time property case study, and then further assessed for its efficiency and effectiveness on an automated deadlock property test bed.

This work was funded by the French ministries of Industry and Research and the Midi-Pyrénées regional authorities through the FUI P and openETCS projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alipour, M.A.: Automated fault localization techniques; a survey. Technical report, Technical report, Oregon State University (2012)

    Google Scholar 

  2. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterexample traces. ACM SIGPLAN Notices 38(1), 97–105 (2003)

    Article  Google Scholar 

  3. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering (2), 125–143 (1977)

    Google Scholar 

  6. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–185 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE safety critical real-time systems. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 352–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of a theoretical study. IEEE Transactions on Communications 24(9), 1036–1043 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

    Article  MathSciNet  Google Scholar 

  10. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baker, L.D., McCallum, A.K.: Distributional clustering of words for text classification. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 96–103. ACM (1998)

    Google Scholar 

  12. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1), 11–21 (1972)

    Article  Google Scholar 

  13. Wong, W.E., Debroy, V.: A survey of software fault localization. University of Texas at Dallas, Tech. Rep. UTDCS-45-09 (2009)

    Google Scholar 

  14. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing Surveys (CSUR) 3(2), 67–78 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ge, N., Pantel, M., Crégut, X. (2014). Automated Failure Analysis in Model Checking Based on Data Mining. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds) Model and Data Engineering. MEDI 2014. Lecture Notes in Computer Science, vol 8748. Springer, Cham. https://doi.org/10.1007/978-3-319-11587-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11587-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11586-3

  • Online ISBN: 978-3-319-11587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics