Abstract
We describe Device Analyzer, a robust data collection tool which is able to reliably collect information on Android smartphone usage from an open community of contributors. We collected the largest, most detailed dataset of Android phone use publicly available to date. In this paper we systematically evaluate smartphones as a platform for mobile ubiquitous computing by quantifying access to critical resources in the wild. Our analysis of the dataset demonstrates considerable diversity in behaviour between users but also over time. We further demonstrate the value of handset-centric data collection by presenting case-study analyses of human mobility, interaction patterns, and energy management and identify notable differences between our results and those found by other studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M.E., Steggles, P.: Towards a better understanding of context and context-awareness. In: CHI (2000)
Arslan, M.Y., Singh, I., Singh, S., Madhyastha, H.V., Sundaresan, K., Krishnamurthy, S.V.: Computing while charging: building a distributed computing infrastructure using smartphones. In: CoNEXT (2012)
Bahl, P., Padmanabhan, V.: RADAR: an in-building RF-based user location and tracking system. In: IEEE INFOCOM (2000)
Böhmer, M., Hecht, B., Schöning, J., Krüger, A., Bauer, G.: Falling asleep with angry birds, facebook and kindle-a large scale study on mobile application usage. In: MobileHCI (2011)
Cheng, Y.-C., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy characterization for metropolitan-scale Wi-Fi localization. In: MobiSys (2005)
Church, K., Smyth, B.: Understanding mobile information needs. In: MobileHCI (2008)
Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.: MAUI: making smartphones last longer with code offload. In: MobiSys (2010)
Dey, A.K., Wac, K., Ferreira, D., Tassini, K., Hong, J.-H., Ramos, J.: Getting closer: an empirical investigation of the proximity of user to their smart phones. In: UbiComp (2011)
Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y.C., Rice, A.: Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. In: SIGMETRICS (2013)
Eagle, N., de Montjoye, Y.-A., Bettencourt, L.M.: Community computing: comparisons between rural and urban societies using mobile phone data. In: CSE (2009)
Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2005)
Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: MobiSys (2010)
Ferreira, D., Dey, A.K., Kostakos, V.: Understanding human-smartphone concerns: a study of battery life. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 19–33. Springer, Heidelberg (2011)
Girardello, A., Michahelles, F.: AppAware: which mobile applications are hot? In: MobileHCI (2010)
González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
Isaacman, S., Becker, R., Cceres, R., Kobourov, S., Rowland, J., Varshavsky, A.: A tale of two cities. In: HotMobile (2010)
Langheinrich, M.: Privacy by design - principles of privacy-aware ubiquitous systems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 273–291. Springer, Heidelberg (2001)
Maisonneuve, N., Stevens, M., Niessen, M.E., Steels, L.: NoiseTube: measuring and mapping noise pollution with mobile phones. In: ITEE (2009)
Oliver, E.: The challenges in large-scale smartphone user studies. In: HotPlanet (2010)
Oliver, E.A., Keshav, S.: An empirical approach to smartphone energy level prediction. In: UbiComp (2011)
Rahmati, A., Zhong, L.: Human-battery interaction on mobile phones. Pervasive Mob. Comput. 5(5), 465–477 (2009)
Ravi, N., Scott, J., Han, L., Iftode, L: Context-aware battery management for mobile phones. In: PerCom (2008)
Rice, A., Hay, S.: Decomposing power measurements for mobile devices. In: PerCom (2010)
Schulman, A., Navda, V., Ramjee, R., Spring, N., Deshpande, P., Grunewald, C., Jain, K., Padmanabhan, V.N.: Bartendr: a practical approach to energy-aware cellular data scheduling. In: MobiCom (2010)
Vallina-Rodriguez, N., Crowcroft, J.: ErdOS: achieving energy savings in mobile OS. In: MobiArch (2011)
Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: large-scale mobile data collection. In: ACM SIGMETRICS Performance Evaluation Review, March 2014 (in press)
Ye, H., Gu, T., Zhu, X., Xu, J., Tao, X., Lu, J., Jin, N.: FTrack: infrastructure-free floor localization via mobile phone sensing. In: PerCom (2012)
Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)
Acknowledgements
We would like to thank Samuel Aaron for his many insightful comments and suggestions related to this work and Andy Hopper for his insight and support. This work was supported by the University of Cambridge Computer Laboratory Premium Studentship scheme, a Google focussed research award and the EPSRC Standard Research Grant EP/P505445/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Wagner, D.T., Rice, A., Beresford, A.R. (2014). Device Analyzer: Understanding Smartphone Usage. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds) Mobile and Ubiquitous Systems: Computing, Networking, and Services. MobiQuitous 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-11569-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-11569-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11568-9
Online ISBN: 978-3-319-11569-6
eBook Packages: Computer ScienceComputer Science (R0)