[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Modal Logic of Knowledge, Belief, and Estimation

  • Conference paper
Logics in Artificial Intelligence (JELIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8761))

Included in the following conference series:

Abstract

We introduce KBE, a modal epistemic logic for reasoning about Knowledge, Belief and Estimation, three attitudes involved in an agent’s decision-making process. In our logic, Knowledge and Belief are captured by S4.2, a modal logic holding a distinguished position among the epistemic logics investigated in AI and Philosophy. The Estimation operator of KBE is a kind of generalized ‘many’ or ‘most’ quantifier, whose origins go back to the work of J. Burgess and A. Herzig, but its model-theoretic incarnation (‘weak filters’) has been introduced by K. Schlechta and V. Jauregui. We work with complete weak filters (‘weak ultrafilters’) as we are interested in situations where an estimation can be always reached. The axiomatization of KBE comprises ‘bridge’ axioms which reflect the intuitive relationship of ‘estimation’ to ‘knowledge’ and ‘belief’, several introspective properties are shown to hold and it comes out that believing ϕ can be equivalently defined in KBE as ‘estimating that ϕ is known’, an interesting fact and an indication of the intuitive correctness of the introduced estimation operator. The model theory of KBE comprises a class of frames combining relational Kripke frames with Scott-Montague semantics, in which neighborhoods are collections of ‘large’ sets of possible worlds. Soundness and completeness is mentioned and a tableaux proof procedure is sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means ‘most’. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 41–53. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Aucher, G.: Principles of knowledge, belief and conditional belief. In: Rebuschi, M., Batt, M., Heinzmann, G., Lihoreau, F., Musiol, M., Trognon, A. (eds.) Dialogue, Rationality, and Formalism. Logic, Argumentation & Reasoning, vol. 3, Springer (2014)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. (53). Cambridge University Press (2001)

    Google Scholar 

  4. Burgess, J.P.: Probability logic. J. Symb. Log. 34(2), 264–274 (1969)

    Article  MATH  Google Scholar 

  5. Carnielli, W.A., Sette, A.M.: Default operators. In: Workshop on Logic, Language, Information and Computation, WOLLIC 1994, UFPE, Recife (1994)

    Google Scholar 

  6. Carnielli, W.A., Veloso, P.A.S.: Ultrafilter logic and generic reasoning. In: Gottlob, et al. (eds.) [12], pp. 34–53

    Google Scholar 

  7. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press (1980)

    Google Scholar 

  8. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthése Library, vol. 277. Kluwer Academic Publishers (1998)

    Google Scholar 

  9. Fitting, M.C.: Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co., Dordrecht (1983)

    Google Scholar 

  10. Gabbay, D.M., Woods, J. (eds.): Logic and the Modalities in the Twentieth Century. Handbook of the History of Logic, vol. 7. North-Holland (2006)

    Google Scholar 

  11. Gochet, P., Gribomont, P.: Epistemic logic. Gabbay and Woods [10], vol. 7, pp. 99–195 (2006)

    Google Scholar 

  12. Gottlob, G., Leitsch, A., Mundici, D. (eds.): KGC 1997. LNCS, vol. 1289. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  13. Halpern, J.: The relationship between knowledge, belief and certainty. Annals of Mathematics and Artificial Intelligence 4, 301–322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halpern, J., Samet, D., Segev, E.: Defining knowledge in terms of belief: The modal logic perspective. Review of Symbolic Logic (to appear)

    Google Scholar 

  15. Herzig, A.: Modal probability, belief, and actions. Fundamenta Informaticae 57(2-4), 323–344 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)

    Google Scholar 

  17. Jauregui, V.: Modalities, Conditionals and Nonmonotonic Reasoning. PhD thesis, Department of Computer Science and Engineering, University of New South Wales (2008)

    Google Scholar 

  18. Kaminski, M., Tiomkin, M.L.: The modal logic of cluster-decomposable kripke interpretations. Notre Dame Journal of Formal Logic 48(4), 511–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Koutras, C.D., Moyzes, C., Nomikos, C., Zikos, Y.: On the ‘in many cases’ modality: tableaux, decidability, complexity, variants. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 207–220. Springer, Heidelberg (2014)

    Google Scholar 

  20. Koutras, C.D., Moyzes, C., Zikos, Y.: A modal logic of Knowledge, Belief and Estimation. Technical report, Graduate Programme in Algorithms and Computation (2014) (available through the authors’ webpages)

    Google Scholar 

  21. Koutras, C.D., Zikos, Y.: A note on the completeness of S4.2. Technical report, 2013, Graduate Programme in Logic, Algorithms and Computation (December 2013)

    Google Scholar 

  22. Lenzen, W.: Recent Work in Epistemic Logic. North-Holland (1978)

    Google Scholar 

  23. Lenzen, W.: Epistemologische Betrachtungen zu [S4,S5]. Erkenntnis 14, 33–56 (1979)

    Article  Google Scholar 

  24. Pacuit, E.: Dynamic epistemic logic I: Modeling knowledge and belief. Philosophy Compass 8(9), 798–814 (2013)

    Article  Google Scholar 

  25. Schlechta, K.: Defaults as generalized quantifiers. Journal of Logic and Computation 5(4), 473–494 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stalnaker, R.: On logics of knowledge and belief. Philosophical Studies 128(1), 169–199 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Koutras, C.D., Moyzes, C., Zikos, Y. (2014). A Modal Logic of Knowledge, Belief, and Estimation. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics