[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents: A Preliminary Report

  • Conference paper
Logics in Artificial Intelligence (JELIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8761))

Included in the following conference series:

  • 1177 Accesses

Abstract

We investigate the minimal knowledge approach of Halpern-Moses ‘only knowing’ in the context of two syntactic variants of stable belief sets that aim in avoiding the unreasonably perfect omniscient agent modelled in R. Stalnaker’s original definition of a stable epistemic state. The ‘only knowing’ approach of J. Halpern and Y. Moses provides equivalent characterizations of ‘honest’ formulas and characterizes the epistemic state of an agent that has been told only a finite number of facts. The formal account of what it means for an agent to ‘only know a’ is actually based on ‘minimal’ epistemic states and is closely related to ground modal nonmonotonic logics. We examine here the behaviour of the HM-‘only knowing’ approach in the realm of the weak variants of stable epistemic states introduced recently by relaxing the positive or negative introspection context rules of Stalnaker’s definition, in a way reminiscent of the work done in modal epistemic logic in response to the ‘logical omniscience’ problem. We define the ‘honest’ formulas - formulas which can be meaningfully ‘only known’ - and characterize them in several ways, including model-theoretic characterizations using impossible worlds. As expected, the generalized ‘only knowing’ approach lacks the simplicity and elegance shared by the approaches based on Stalnaker’s stable sets (actually based on S5) but it is more realistic and can be handily fine-tuned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ågotnes, T., Alechina, N.: The dynamics of syntactic knowledge. Journal of Logic and Computation 17(1), 83–116 (2007)

    Article  MathSciNet  Google Scholar 

  2. Belle, V., Lakemeyer, G.: Multi-agent only-knowing revisited. In: Lin, et al. (eds.) [26]

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)

    Google Scholar 

  4. Brewka, G., Eiter, T., McIlraith, S.A. (eds.): Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press (2012)

    Google Scholar 

  5. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press (1980)

    Google Scholar 

  6. Donini, F.M., Nardi, D., Rosati, R.: Ground nonmonotonic modal logics. Journal of Logic and Computation 7(4), 523–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fitting, M.C.: Basic Modal Logic. In: Gabbay, et al. (eds.) [8], vol. 1, pp. 368–448 (1993)

    Google Scholar 

  8. Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelligence and Logic Programming. Oxford University Press (1993)

    Google Scholar 

  9. Gabbay, D.M., Woods, J.: Logic and the Modalities in the Twentieth Century. Handbook of the History of Logic, vol. 7. North-Holland (2006)

    Google Scholar 

  10. Gochet, P., Gribomont, P.: Epistemic logic. In: Gabbay, Woods (eds.) [9], vol. 7, pp. 99–195 (2006)

    Google Scholar 

  11. Halpern, J.: A critical reexamination of default logic, autoepistemic logic and only-knowing. Computational Intelligence 13(1), 144–163 (1993); A preliminary version appears in Mundici, D., Gottlob, G., Leitsch, A. (eds.): KGC 1993. LNCS, vol. 713, pp. 144–163. Springer, Heidelberg (1993)

    Google Scholar 

  12. Halpern, J.: A theory of knowledge and ignorance for many agents. Journal of Logic and Computation 7(1), 79–108 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halpern, J., Moses, Y.: Towards a theory of knowledge and ignorance: Preliminary report in Apt, K. (ed.) Logics and Models of Concurrent Systems. Springer (1985)

    Google Scholar 

  14. Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. Journal of Logic and Computation 11(1), 41–70 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halpern, J.Y., Pucella, R.: Dealing with logical omniscience: Expressiveness and pragmatics. Artificial Intelligence 175(1), 220–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. van der Hoek, W., Jaspars, J., Thijsse, E.: Honesty in partial logic. Studia Logica 56(3), 323–360 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)

    Google Scholar 

  18. Jago, M.: Logics for Resource-Bounded Agents. PhD thesis, University of Nottingham (2006)

    Google Scholar 

  19. Janhunen, T., Niemelä, I. (eds.): JELIA 2010. LNCS, vol. 6341. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  20. Jaspars, J.: A generalization of stability and its application to circumscription of positive introspective knowledge. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 289–299. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  21. Koutras, C.D., Moyzes, C., Zikos, Y.: Syntactic reconstructions of stable belief sets. Technical report, Graduate Programme in Algorithms and Computation (2014)

    Google Scholar 

  22. Koutras, C.D., Zikos, Y.: On a modal epistemic axiom emerging from McDermott-Doyle logics. Fundamenta Informaticae 96(1-2), 111–125 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Koutras, C.D., Zikos, Y.: Stable belief sets revisited. In: Janhunen, Niemelä (eds.) [19], pp. 221–233

    Google Scholar 

  24. Lakemeyer, G., Levesque, H.J.: Only-knowing meets nonmonotonic modal logic. In: Brewka, et al. (eds.) [4]

    Google Scholar 

  25. Levesque, H.J.: All I Know: A study in autoepistemic logic. Artificial Intelligence 42(2-3), 263–309 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, F., Sattler, U., Truszczynski, M. (eds.): Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13. AAAI Press (2010)

    Google Scholar 

  27. Marek, V.W., Schwarz, G.F., Truszczyński, M.: Modal non-monotonic logics: Ranges,characterization, computation. Journal of the ACM 40, 963–990 (1993)

    Article  MATH  Google Scholar 

  28. Marek, V.W., Truszczyński, M.: Nonmonotonic Logic: Context-dependent Reasoning. Springer (1993)

    Google Scholar 

  29. Pearce, D., Uridia, L.: An approach to minimal belief via objective belief. In: Walsh (ed.) [34], pp. 1045–1050

    Google Scholar 

  30. Schwarz, G.F., Truszczyński, M.: Minimal knowledge problem: a new approach. Artificial Intelligence 67, 113–141 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Segerberg, K.: An essay in Clasical Modal Logic. Filosofiska Studies, Uppsala (1971)

    Google Scholar 

  32. Stalnaker, R.: A note on non-monotonic modal logic. Artificial Intelligence 64, 183–196 (1993) (Revised version of the unpublished note originally circulated in 1980)

    Article  MathSciNet  Google Scholar 

  33. van der Hoek, W., Jaspars, J., Thijsse, E.: Persistence and minimality in epistemic logic. Annals of Mathematics and Artificial Intelligence 27(1-4), 25–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Walsh, T. (ed.): Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16-22. IJCAI/AAAI (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Askounis, D., Koutras, C.D., Moyzes, C., Zikos, Y. (2014). Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents: A Preliminary Report. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics