[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing Skyline from Evidential Data

  • Conference paper
Scalable Uncertainty Management (SUM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8720))

Included in the following conference series:

Abstract

The skyline operator is a powerful means in multi-criteria decision-making since it retrieves the most interesting objects according to a set of attributes. On the other hand, uncertainty is inherent in many real applications. One of the most powerful approaches used to model uncertainty is the evidence theory. Databases that manage such type of data are called evidential databases. In this paper, we tackle the problem of skyline analysis on evidential databases. We first introduce a skyline model that is appropriate to the evidential data nature. We then develop an efficient algorithm to compute this kind of skyline. Finally, we present a thorough experimental evaluation of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)

    Article  Google Scholar 

  2. Atallah, M.J., Qi, Y.: Computing all skyline probabilities for uncertain data. In: PODS, pp. 279–287 (2009)

    Google Scholar 

  3. Bach-Tobji, M.A., Ben-Yaghlane, B., Mellouli, K.: A new algorithm for mining frequent itemsets from evidential databases. In: IPMU, pp. 1535–1542 (2008)

    Google Scholar 

  4. Bell, D.A., Guan, J.W., Lee, S.K.: Generalized union and project operations for pooling uncertain and imprecise information. Data Knowl. Eng. 18(2), 89–117 (1996)

    Article  MATH  Google Scholar 

  5. Benouaret, K., Benslimane, D., HadjAli, A.: Selecting skyline web services from uncertain qos. In: IEEE SCC, pp. 523–530 (2012)

    Google Scholar 

  6. Bosc, P., Hadjali, A., Pivert, O.: On possibilistic skyline queries. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 412–423. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilistic relational databases. IEEE T. Fuzzy Systems 13(1), 124–139 (2005)

    Article  Google Scholar 

  8. Bosc, P., Pivert, O.: Modeling and querying uncertain relational databases: a survey of approaches based on the possible worlds semantics. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18(5), 565–603 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD Conference, pp. 503–514 (2006)

    Google Scholar 

  10. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–719 (2003)

    Google Scholar 

  11. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. 16(4), 523–544 (2007)

    Article  Google Scholar 

  12. Dalvi, N.N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: PODS, pp. 1–12 (2007)

    Google Scholar 

  13. Das Sarma, A., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.: Representative skylines using threshold-based preference distributions. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 387–398. IEEE Computer Society, Washington, DC (2011)

    Chapter  Google Scholar 

  14. Dempster, A.P.: A generalization of bayesian inference. Journal of the Royal Statistical Society 30(B), 205–247 (1968)

    MATH  MathSciNet  Google Scholar 

  15. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press (1988)

    Google Scholar 

  16. Dubois, D., Prade, H.: Formal representations of uncertainty. In: Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.) Decision-Making - Concepts and Methods, ch. 3, pp. 85–156. Wiley (2009)

    Google Scholar 

  17. Ha-Duong, M.: Hierarchical fusion of expert opinions in the transferable belief model, application to climate sensitivity. Int. J. Approx. Reasoning 49(3), 555–574 (2008)

    Article  Google Scholar 

  18. Jiang, B., Pei, J., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods. J. Intell. Inf. Syst. 38(1), 1–39 (2012)

    Article  Google Scholar 

  19. Lee, S.K.: An extended relational database model for uncertain and imprecise information. In: VLDB, pp. 211–220 (1992)

    Google Scholar 

  20. Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search over uncertain databases. In: SIGMOD Conference, pp. 213–226 (2008)

    Google Scholar 

  21. Lian, X., Chen, L.: Probabilistic inverse ranking queries over uncertain data. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 35–50. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Lim, E.P., Srivastava, J., Shekhar, S.: Resolving attribute incompatibility in database integration: An evidential reasoning approach. In: ICDE, pp. 154–163 (1994)

    Google Scholar 

  23. Lim, E.P., Srivastava, J., Shekhar, S.: An evidential reasoning approach to attribute value conflict resolution in database integration. IEEE Trans. Knowl. Data Eng. 8(5), 707–723 (1996)

    Article  Google Scholar 

  24. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: VLDB, pp. 15–26 (2007)

    Google Scholar 

  25. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  26. Yager, R.R., Kacprzyk, J., Fedrizzi, M.: Advances in the dempster-shafer theory of evidence. John Wiley & Sons, Inc., New York (1994)

    Google Scholar 

  27. Yong, H., Lee, J., Kim, J., won Hwang, S.: Skyline ranking for uncertain databases. Information Systems (2014)

    Google Scholar 

  28. Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qows. IEEE T. Services Computing 3(1), 16–29 (2010)

    Article  Google Scholar 

  29. Zhang, M., Alhajj, R.: Skyline queries with constraints: Integrating skyline and traditional query operators. Data Knowl. Eng. 69(1), 153–168 (2010)

    Article  Google Scholar 

  30. Zhang, W., Lin, X., Zhang, Y., Cheema, M.A., Zhang, Q.: Stochastic skylines. ACM Trans. Database Syst. 37(2) (2012)

    Google Scholar 

  31. Zhang, W., Lin, X., Zhang, Y., Wang, W., Yu, J.X.: Probabilistic skyline operator over sliding windows. In: ICDE, pp. 1060–1071 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Elmi, S., Benouaret, K., Hadjali, A., Bach Tobji, M.A., Ben Yaghlane, B. (2014). Computing Skyline from Evidential Data. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11508-5_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11507-8

  • Online ISBN: 978-3-319-11508-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics