Abstract
The skyline operator is a powerful means in multi-criteria decision-making since it retrieves the most interesting objects according to a set of attributes. On the other hand, uncertainty is inherent in many real applications. One of the most powerful approaches used to model uncertainty is the evidence theory. Databases that manage such type of data are called evidential databases. In this paper, we tackle the problem of skyline analysis on evidential databases. We first introduce a skyline model that is appropriate to the evidential data nature. We then develop an efficient algorithm to compute this kind of skyline. Finally, we present a thorough experimental evaluation of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)
Atallah, M.J., Qi, Y.: Computing all skyline probabilities for uncertain data. In: PODS, pp. 279–287 (2009)
Bach-Tobji, M.A., Ben-Yaghlane, B., Mellouli, K.: A new algorithm for mining frequent itemsets from evidential databases. In: IPMU, pp. 1535–1542 (2008)
Bell, D.A., Guan, J.W., Lee, S.K.: Generalized union and project operations for pooling uncertain and imprecise information. Data Knowl. Eng. 18(2), 89–117 (1996)
Benouaret, K., Benslimane, D., HadjAli, A.: Selecting skyline web services from uncertain qos. In: IEEE SCC, pp. 523–530 (2012)
Bosc, P., Hadjali, A., Pivert, O.: On possibilistic skyline queries. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 412–423. Springer, Heidelberg (2011)
Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilistic relational databases. IEEE T. Fuzzy Systems 13(1), 124–139 (2005)
Bosc, P., Pivert, O.: Modeling and querying uncertain relational databases: a survey of approaches based on the possible worlds semantics. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18(5), 565–603 (2010)
Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD Conference, pp. 503–514 (2006)
Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–719 (2003)
Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. 16(4), 523–544 (2007)
Dalvi, N.N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: PODS, pp. 1–12 (2007)
Das Sarma, A., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.: Representative skylines using threshold-based preference distributions. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 387–398. IEEE Computer Society, Washington, DC (2011)
Dempster, A.P.: A generalization of bayesian inference. Journal of the Royal Statistical Society 30(B), 205–247 (1968)
Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press (1988)
Dubois, D., Prade, H.: Formal representations of uncertainty. In: Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.) Decision-Making - Concepts and Methods, ch. 3, pp. 85–156. Wiley (2009)
Ha-Duong, M.: Hierarchical fusion of expert opinions in the transferable belief model, application to climate sensitivity. Int. J. Approx. Reasoning 49(3), 555–574 (2008)
Jiang, B., Pei, J., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods. J. Intell. Inf. Syst. 38(1), 1–39 (2012)
Lee, S.K.: An extended relational database model for uncertain and imprecise information. In: VLDB, pp. 211–220 (1992)
Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search over uncertain databases. In: SIGMOD Conference, pp. 213–226 (2008)
Lian, X., Chen, L.: Probabilistic inverse ranking queries over uncertain data. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 35–50. Springer, Heidelberg (2009)
Lim, E.P., Srivastava, J., Shekhar, S.: Resolving attribute incompatibility in database integration: An evidential reasoning approach. In: ICDE, pp. 154–163 (1994)
Lim, E.P., Srivastava, J., Shekhar, S.: An evidential reasoning approach to attribute value conflict resolution in database integration. IEEE Trans. Knowl. Data Eng. 8(5), 707–723 (1996)
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: VLDB, pp. 15–26 (2007)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Yager, R.R., Kacprzyk, J., Fedrizzi, M.: Advances in the dempster-shafer theory of evidence. John Wiley & Sons, Inc., New York (1994)
Yong, H., Lee, J., Kim, J., won Hwang, S.: Skyline ranking for uncertain databases. Information Systems (2014)
Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qows. IEEE T. Services Computing 3(1), 16–29 (2010)
Zhang, M., Alhajj, R.: Skyline queries with constraints: Integrating skyline and traditional query operators. Data Knowl. Eng. 69(1), 153–168 (2010)
Zhang, W., Lin, X., Zhang, Y., Cheema, M.A., Zhang, Q.: Stochastic skylines. ACM Trans. Database Syst. 37(2) (2012)
Zhang, W., Lin, X., Zhang, Y., Wang, W., Yu, J.X.: Probabilistic skyline operator over sliding windows. In: ICDE, pp. 1060–1071 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Elmi, S., Benouaret, K., Hadjali, A., Bach Tobji, M.A., Ben Yaghlane, B. (2014). Computing Skyline from Evidential Data. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-11508-5_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11507-8
Online ISBN: 978-3-319-11508-5
eBook Packages: Computer ScienceComputer Science (R0)