[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adaptive Neuro Fuzzy Inference System Used to Build Models with Uncertain Data: Study Case for Rainfed Maize in the State of Puebla (Mexico)

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 319))

  • 942 Accesses

Abstract

A model was built using Adaptive Neuro Fuzzy Inference System (ANFIS) to determine the relationship between the natural suitability index of rainfed maize and yield per hectare and percentage of production area lost for the state of Puebla. The data used to build the model presented inconsistencies. The data of the INEGIs land use map presented more municipalities without rainfed maize agriculture than the database of SAGARPA. Also the SAGARPA data, in terms of the percentage of production area lost, do not mark any distinctions of the loss. Even with data inconsistencies ANFIS produced a coherent output reviewed by experts and local studies. The model shows that higher the percentage of production area lost and high yields, the higher the suitability index is. According to local studies this is due to the high degradation of the soils and confirmed with the second model built adding soil degradation information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278

    Google Scholar 

  2. Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York

    MATH  Google Scholar 

  3. Gaspar Angeles E, Ortiz Torres E et al (2010) Caracterización y rendimiento de poblaciones de maíz nativas de Molcaxac, Puebla. Revista fitotecnica mexicana 33(4)

    Google Scholar 

  4. Huato MAD, Cruz Leon A et al (2012) Management of corn at Cohetzala, Puebla, Mexico: between the local and the global. Estudios Sociales XX(40)

    Google Scholar 

  5. INEGI (2002) Degradación de suelos. Degradación del medio ambiente, SEMARNAT and Colegio de Postgraduados

    Google Scholar 

  6. INEGI (2005) Uso del Suelo y Vegetación

    Google Scholar 

  7. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Google Scholar 

  8. Jang J-SR, Sun C-T (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River

    Google Scholar 

  9. Long A, Benz BF et al (1989) First direct AMS dates on early maize from Tehuacan, Mexico. Radiocarbon 31(3):1035–1040

    Google Scholar 

  10. MATLAB (2009) Fuzzy logic toolbox. I. The MathWorks

    Google Scholar 

  11. Monterroso AI, Conde C et al (2009) Assessing current and potential rainfed maize suitability under climate change scenarios in Mexico. Atmósfera 24(1):53–57

    Google Scholar 

  12. SAGARPA, SIAP (2003–2012). Producción anual de maíz del estado de Puebla

    Google Scholar 

  13. Sugeno M (1977) Fuzzy measures and fuzzy integrals: a survey. North-Holland, NY

    Google Scholar 

  14. Vermonden A (2012) Modelo Difuso para la Evaluacón de la Aptitud Actual y Potencial del Maíz de Temporal en México con Cambio Climático. Mexico, Universidad Nacional Autonoma de Mexico. Mastería, Posgrado de Ciencias de la Tierra

    Google Scholar 

  15. Viveros Flores CE (2010) Estudio de la Dinámica de Aprovechamiento del Maíz en las Unidades de Producción Familiar en el Valle de Puebla, México. Postgrado de estrategias para el desarrollo agrícola regional. Puebla, Colegio de Postgraduados. PhD, p 119

    Google Scholar 

Download references

Acknowledgments

The present work was developed with the support of the Programa de Investigación en Cambio Climático (PINCC) of the Universidad Nacional Autónoma de México (UNAM) and the Consejo Nacional de Ciencia y Tecnología (Conacyt). We would like to thank Dr. Cecilia Conde, Dr. Alejandro Monterroso and M. Guillermo Rosales for their valuable inputs and serving as the experts to validate the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anäis Vermonden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vermonden, A., Gay-García, C., Paz-Ortiz, I. (2015). Adaptive Neuro Fuzzy Inference System Used to Build Models with Uncertain Data: Study Case for Rainfed Maize in the State of Puebla (Mexico). In: Obaidat, M., Koziel, S., Kacprzyk, J., Leifsson, L., Ören, T. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-11457-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11457-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11456-9

  • Online ISBN: 978-3-319-11457-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics