Abstract
A model was built using Adaptive Neuro Fuzzy Inference System (ANFIS) to determine the relationship between the natural suitability index of rainfed maize and yield per hectare and percentage of production area lost for the state of Puebla. The data used to build the model presented inconsistencies. The data of the INEGIs land use map presented more municipalities without rainfed maize agriculture than the database of SAGARPA. Also the SAGARPA data, in terms of the percentage of production area lost, do not mark any distinctions of the loss. Even with data inconsistencies ANFIS produced a coherent output reviewed by experts and local studies. The model shows that higher the percentage of production area lost and high yields, the higher the suitability index is. According to local studies this is due to the high degradation of the soils and confirmed with the second model built adding soil degradation information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278
Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York
Gaspar Angeles E, Ortiz Torres E et al (2010) Caracterización y rendimiento de poblaciones de maíz nativas de Molcaxac, Puebla. Revista fitotecnica mexicana 33(4)
Huato MAD, Cruz Leon A et al (2012) Management of corn at Cohetzala, Puebla, Mexico: between the local and the global. Estudios Sociales XX(40)
INEGI (2002) Degradación de suelos. Degradación del medio ambiente, SEMARNAT and Colegio de Postgraduados
INEGI (2005) Uso del Suelo y Vegetación
Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685
Jang J-SR, Sun C-T (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River
Long A, Benz BF et al (1989) First direct AMS dates on early maize from Tehuacan, Mexico. Radiocarbon 31(3):1035–1040
MATLAB (2009) Fuzzy logic toolbox. I. The MathWorks
Monterroso AI, Conde C et al (2009) Assessing current and potential rainfed maize suitability under climate change scenarios in Mexico. Atmósfera 24(1):53–57
SAGARPA, SIAP (2003–2012). Producción anual de maíz del estado de Puebla
Sugeno M (1977) Fuzzy measures and fuzzy integrals: a survey. North-Holland, NY
Vermonden A (2012) Modelo Difuso para la Evaluacón de la Aptitud Actual y Potencial del Maíz de Temporal en México con Cambio Climático. Mexico, Universidad Nacional Autonoma de Mexico. Mastería, Posgrado de Ciencias de la Tierra
Viveros Flores CE (2010) Estudio de la Dinámica de Aprovechamiento del Maíz en las Unidades de Producción Familiar en el Valle de Puebla, México. Postgrado de estrategias para el desarrollo agrícola regional. Puebla, Colegio de Postgraduados. PhD, p 119
Acknowledgments
The present work was developed with the support of the Programa de Investigación en Cambio Climático (PINCC) of the Universidad Nacional Autónoma de México (UNAM) and the Consejo Nacional de Ciencia y Tecnología (Conacyt). We would like to thank Dr. Cecilia Conde, Dr. Alejandro Monterroso and M. Guillermo Rosales for their valuable inputs and serving as the experts to validate the model.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Vermonden, A., Gay-García, C., Paz-Ortiz, I. (2015). Adaptive Neuro Fuzzy Inference System Used to Build Models with Uncertain Data: Study Case for Rainfed Maize in the State of Puebla (Mexico). In: Obaidat, M., Koziel, S., Kacprzyk, J., Leifsson, L., Ören, T. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-11457-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-11457-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11456-9
Online ISBN: 978-3-319-11457-6
eBook Packages: EngineeringEngineering (R0)