[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Extended MPL-C Model for Bayesian Network Parameter Learning with Exterior Constraints

  • Conference paper
Probabilistic Graphical Models (PGM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8754))

Included in the following conference series:

Abstract

Lack of relevant data is a major challenge for learning Bayesi-an networks (BNs) in real-world applications. Knowledge engineering techniques attempt to address this by incorporating domain knowledge from experts. The paper focuses on learning node probability tables using both expert judgment and limited data. To reduce the massive burden of eliciting individual probability table entries (parameters) it is often easier to elicit constraints on the parameters from experts. Constraints can be interior (between entries of the same probability table column) or exterior (between entries of different columns). In this paper we introduce the first auxiliary BN method (called MPL-EC) to tackle parameter learning with exterior constraints. The MPL-EC itself is a BN, whose nodes encode the data observations, exterior constraints and parameters in the original BN. Also, MPL-EC addresses (i) how to estimate target parameters with both data and constraints, and (ii) how to fuse the weights from different causal relationships in a robust way. Experimental results demonstrate the superiority of MPL-EC at various sparsity levels compared to conventional parameter learning algorithms and other state-of-the-art parameter learning algorithms with constraints. Moreover, we demonstrate the successful application to learn a real-world software defects BN with sparse data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Networks. CRC Press, New York (2012)

    Google Scholar 

  2. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  3. Hutchinson, R.A., Niculescu, R.S., Keller, T.A., Rustandi, I., Mitchell, T.M.: Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using hidden process models. NeuroImage 46(1), 87–104 (2009)

    Article  Google Scholar 

  4. Yet, B., Perkins, Z., Fenton, N., Tai, N., Marsh, W.: Not just data: A method for improving prediction with knowledge. J. Biomed. Inform. 48, 28–37 (2014)

    Article  Google Scholar 

  5. Šingliar, T., Hauskrecht, M.: Learning to detect incidents from noisily labeled data. Mach. Learn. 79(3), 335–354 (2010)

    Article  MathSciNet  Google Scholar 

  6. Liao, W., Ji, Q.: Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recogn 42(11), 3046–3056 (2009)

    Article  MATH  Google Scholar 

  7. Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Artif. Intell. 44(3), 257–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Druzdzel, M.J., Van Der Gaag, L.C.: Elicitation of probabilities for belief networks: Combining qualitative and quantitative information. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc, pp. 141–148. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  9. Cano, A., Masegosa, A.R., Moral, S.: A method for integrating expert knowledge when learning Bayesian networks from data. IEEE Trans. on Sys. Man Cyber. Part B 41(5), 1382–1394 (2011)

    Article  Google Scholar 

  10. Niculescu, R.S., Mitchell, T., Rao, B.: Bayesian network learning with parameter constraints. J. Mach. Learn. Res. 7, 1357–1383 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Yang, S., Natarajan, S.: Knowledge intensive learning: Combining qualitative constraints with causal independence for parameter learning in probabilistic models. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 580–595. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Zhou, Y., Fenton, N., Neil, M.: Bayesian network approach to multinomial parameter learning using data and expert judgments. Int. J. Approx. Reasoning 55(5), 1252–1268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Altendorf, E.E.: Learning from sparse data by exploiting monotonicity constraints. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pp. 18–26. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  14. van der Gaag, L.C., Renooij, S., Geenen, P.L.: Lattices for studying monotonicity of Bayesian networks. In: Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, Prague, Czech Republic, pp. 99–106 (2006)

    Google Scholar 

  15. van der Gaag, L.C., Tabachneck-Schijf, H.J.M., Geenen, P.L.: Verifying monotonicity of bayesian networks with domain experts. Int. J. Approx. Reasoning 50(3), 429–436 (2009)

    Article  Google Scholar 

  16. Neil, M., Tailor, M., Marquez, D.: Inference in hybrid Bayesian networks using dynamic discretization. Stat. and Comput. 17(3), 219–233 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Stat. and Comput. 10(4), 325–337 (2000)

    Article  Google Scholar 

  18. Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. Int. J. Approx. Reasoning 52(5), 641–657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shenoy, P.P.: Two issues in using mixtures of polynomials for inference in hybrid Bayesian networks. Int. J. Approx. Reasoning 53(5), 847–866 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feelders, A., van der Gaag, L.: Learning Bayesian network parameters under order constraints. Int. J. Approx. Reasoning 42(1), 37–53 (2006)

    Article  MATH  Google Scholar 

  21. Xiang, Y., Jia, N.: Modeling causal reinforcement and undermining for efficient CPT elicitation. IEEE Trans. on Knowl. and Data Eng. 19(12), 1708–1718 (2007)

    Article  Google Scholar 

  22. Xiang, Y., Truong, M.: Acquisition of causal models for local distributions in Bayesian networks. IEEE Trans. on Cyber (2013), doi:10.1109/TCYB.2013.2290775

    Google Scholar 

  23. Neil, M., Chen, X., Fenton, N.: Optimizing the calculation of conditional probability tables in hybrid Bayesian networks using binary factorization. IEEE Trans. on Knowl. and Data Eng. 24(7), 1306–1312 (2012)

    Article  Google Scholar 

  24. AgenaRisk (2014), http://www.agenarisk.com/

  25. Cover, T.M., Thomas, J.: Entropy, relative entropy and mutual information. Elements of Information Theory, 12–49 (1991)

    Google Scholar 

  26. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. Ser. B, 157–224 (1988)

    Google Scholar 

  27. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2-3), 131–163 (1997)

    Article  MATH  Google Scholar 

  28. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, New York (2003)

    Book  Google Scholar 

  29. Fenton, N., Neil, M., Marsh, W., Hearty, P., Radliński, Ł., Krause, P.: On the effectiveness of early life cycle defect prediction with Bayesian nets. Empirical Softw. Engg. 13(5), 499–537 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, Y., Fenton, N., Neil, M. (2014). An Extended MPL-C Model for Bayesian Network Parameter Learning with Exterior Constraints. In: van der Gaag, L.C., Feelders, A.J. (eds) Probabilistic Graphical Models. PGM 2014. Lecture Notes in Computer Science(), vol 8754. Springer, Cham. https://doi.org/10.1007/978-3-319-11433-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11433-0_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11432-3

  • Online ISBN: 978-3-319-11433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics