Abstract
We consider egomotion estimation in the context of driver-assistance systems. In order to estimate the actual vehicle movement we only apply stereo cameras (and not any additional sensor). The paper proposes a visual odometry method by back-mapping clouds of reconstructed 3D points. Our method, called stereo-vision point-cloud back mapping method (sPBM), aims at minimizing 3D back-projection errors. We report about extensive experiments for sPBM. At this stage we consider accuracy as being the first priority; optimizing run-time performance will need to be considered later. Accurately estimated motion among subsequent frames of a recorded video sequence can then be used, for example, for 3D roadside reconstruction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badino, H., Franke, U., Rabe, C., Gehrig, S.: Stereo vision-based detection of moving objects under strong camera motion. In: Proc. Int. Conf. Computer Vision Theory Applications, pp. 25–28 (2006)
Badino, H., Kanade, T.: A head-wearable short-baseline stereo system for the simultaneous estimation of structure and motion. In: Proc. Conf. Machine Vision Applications (2011)
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Analysis Machine Intelligence 14(2), 239–256 (1992)
Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm. Intel Corporation, Microprocessor Research Labs, USA (2000)
Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest point algorithm. In: Proc. ICPR, vol. 3, pp. 545–548 (2002)
Demirdjian, D., Darrell, T.: Motion estimation from disparity images. In: Proc. ICCV, vol. 1, pp. 213–218 (2001)
Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)
Klette, R.: Concise Computer Vision. Springer, London (2014)
Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)
Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars exploration rovers. J. Field Robotics 24, 169–186 (2007)
Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Robotics Automation 3, 239–248 (1987)
Matthies, L.: Dynamic stereo vision. Ph.D. dissertation, Carnegie Mellon University (1989)
Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. ICVPR, pp. 652–659 (2004)
Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proc. ICCV, pp. 2564–2571 (2011)
Scaramuzza, D., Fraundorfer, F.: Visual odometry tutorial. Robotics Automation Magazine 18(4), 80–92 (2011)
Song, Z., Klette, R.: Robustness of point feature detection. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 91–99. Springer, Heidelberg (2013)
Zeng, Y., Klette, R.: Multi-run 3D streetside reconstruction from a vehicle. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 580–588. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Geng, H., Nicolescu, R., Klette, R. (2014). Egomotion Estimation by Point-Cloud Back-Mapping. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-11331-9_28
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11330-2
Online ISBN: 978-3-319-11331-9
eBook Packages: Computer ScienceComputer Science (R0)