Abstract
The work presents the analysis of mechanisms for determining the susceptibility of parametric indices (such as the h-index) of evaluation of scientific articles published on the modification of parameters not resulting from essential value of the research work. Currently, most methods for verifying the article is focused on the selection of works potentially strongly influence the international position of a journal. To this end, editorial offices wide use of parametric methods of assessment. In addition, the work attempts to identify the used criterion functions, namely the assessment parameters and guidance, the risks associated with using this type of method to change the popular parametric indexes for authors and journals. These parameters are divided into categories and offered their initial verification based on statistical analysis of already published articles in various journals. Each parameter has attributed weight function, which allows to define its impact on the total evaluation of an article, and also adaptation of formula to any academic journal. Weight functions will be determined with the usage of neural networks or genetic algorithms, aiming to their individual adaptation to particular journal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Egghe, L., Rousseau, R.: Introduction to Informetrics. Elsevier, Amsterdam (1990)
Moed, H.F., Vriens, M.: Possible inaccuracies occurring in citation analysis. J. Inf. Sci. 15, 95–107 (1989)
Todorov, R.: Journal citation measures: A concise review. J. Inf. Sci. I4, 47–65 (1988)
Zhou, D., Orshanskiy, S.A., Zha, H., Giles, C.L.: Co-Ranking Authors and Documents in a Heterogeneous Network, In: International Conference on Data Mining (2007)
Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with Google. J. informetr. 1, 8 (2007)
Garfield, E.: Citation analysis as a tool in journal evaluation. Science 178(60), 471–479 (1972)
Liu, X., Bollen, J., Nelson, M.L., Van de Sompel, H.: Coauthorship networks in the digital library research community (2005). arXiv:cs/0502056
Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Internet Tech. 5(1), 92–128 (2005)
De Moya, F.: The SJR indicator: A new indicator of journals’ scientific prestige (2009). arXiv:0912.4141
Garfield, E.: The history and meaning of the journal impact factor. JAMA 295, 90–3 (2006)
Amin, M., Mabe, M.: Impact factors: Use and Abuse. Perspectives in Publishing, vol. 1, pp. 1–6 (2000)
Huang, M.-H., Cathy Lin, W.-Y.: The influence of journal self-citations on journal impact factor and immediacy index. Online Information Review, 365, 639–654 (2012)
Hirsch, J.E.: An index to quantify an individual’s scientific research output. In: Proceedings of the National Academy Science (PNAS), 102(46) (2005)
SNIP and SJR at Journal Metrics. www.journalmetrics.com
SCImago Journal Rank (SJR). http://www.scimagojr.com/
Source - Normalized Impact per Paper (SNIP). www.journalindicators.com
Impact Factor (IF). http://thomsonreuters.com/products_services/science/free/essays/impact_factor
h-index. http://help.scopus.com/robo/projects/schelp/h_hirschgraph.htm
Article Influence (AI). www.eigenfactor.org
Relative Citation Rates (RCR)/Journal to Field Impact Score (JFIS)
Wenneras, C., Wold, A.: Nepotism and sexism in peer-review. Nature 387(6631), 341–343 (1997)
Churchman, C.W., Ackoff, R.L.: An approximate measure of value. J. Operat. Res. Soc. Am. 2(2), 172–187 (1954)
Widayanti, D., Oka, S., Arya, S.: Analysis and implementation fuzzy multi-attribute decision making saw method for selection of high achieving students in faculty level. IJCSI International Journal Computer Science Issues 10(1), 2 (2013). ISSN 1694–0784
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW7 Proceedings of the Seventh International Conference on World Wide Web 7, pp. 107–117. Elsevier Science Publishers B.V. (1998)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical Report, Stanford Digital Library Technologies Project (1998)
Maslov, S., Redner, S.: Promise and pitfalls of extending Google’s PageRank algorithm to citation networks. J. Neurosci. 28, 11103 (2008)
Christoph, B., Kokkelmans, S.: Detecting h-index manipulation through self-citation analysis. Scientometrics 87(1), 85–98 (2011)
Bihui, J., et al.: The R-and AR-indices: Complementing the h-index. Chin. Sci. Bulletin 52(6), 855–863 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Rumin, R., Potiopa, P. (2015). The Assessment of the EPQ Parameter for Detecting H-Index Manipulation and the Analysis of Scientific Publications . In: Mach-Król, M., M. Olszak, C., Pełech-Pilichowski, T. (eds) Advances in ICT for Business, Industry and Public Sector. Studies in Computational Intelligence, vol 579. Springer, Cham. https://doi.org/10.1007/978-3-319-11328-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-11328-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11327-2
Online ISBN: 978-3-319-11328-9
eBook Packages: EngineeringEngineering (R0)