Abstract
In this paper, we present a method based on belief functions to evaluate the quality of the optimal assignment solution of a classical association problem encountered in multiple target tracking applications. The purpose of this work is not to provide a new algorithm for solving the assignment problem, but a solution to estimate the quality of the individual associations (pairings) given in the optimal assignment solution. To the knowledge of authors, this problem has not been addressed so far in the literature and its solution may have practical aspects for improving the performances of multisensor-multitarget tracking systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Shalom, Y., Willet, P.K., Tian, X.: Tracking and Data Fusion: A Handbook of Algorithms. YBS Publishing, Storrs (2011)
Hall, D.L., Chong, C.Y., Llinas, J., Liggins II, M.: Distributed Data Fusion for Network-Centric Operations. CRC Press (2013)
He, X., Tharmarasa, R., Pelletier, M., Kirubarajan, T.: Accurate Murty’s Algorithm for Multitarget Top Hypothesis. In: Proc. of Fusion 2011, Chicago, USA (2011)
Dezert, J., Smarandache, F., Tchamova, A.: On the Blackman’s Association Problem. In: Proc. of Fusion 2003, Cairns, Australia (2003)
Tchamova, A., Dezert, J., Semerdjiev, T., Konstantinova, P.: Target Tracking with Generalized Data Association Based on the General DSm Rule of Combination. In: Proc. of Fusion 2004, Stockholm, Sweden (2004)
Dezert, J., Tchamova, A., Semerdjiev, T., Konstantinova, P.: Performance Evaluation of Fusion Rules For Multitarget Tracking in Clutter Based on Generalized Data Association. In: Proc. of Fusion 2005, Philadelphia, USA (2005)
Denœux, T., El Zoghby, N., Cherfaoui, V., Jouglet, A.: Optimal Object Association in the Dempster- Shafer Framework. To appear in IEEE Trans. on Cybern (2014)
Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research Logistic Quarterly 2, 83–97 (1955)
Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)
Bourgeois, F., Lassalle, J.C.: An Extension of the Munkres Algorithm for the Assignment Problem to Rectangular Matrices. Comm. of the ACM 14(12), 802–804 (1971)
Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. J. of Comp. 38(4), 325–340 (1987)
Bertsekas, D.: The auction algorithm: A Distributed Relaxation Method for the Assignment Problem. Annals of Operations Research 14(1), 105–123 (1988)
Murty, K.G.: An Algorithm for Ranking all the Assignments in Order of Increasing Cost. Operations Research 16(3), 682–687 (1968)
Chegireddy, C.R., Hamacher, H.W.: Algorithms for Finding K-best Perfect Matching. Discrete Applied Mathematics 18, 155–165 (1987)
Danchick, R., Newnam, G.E.: A Fast Method for Finding the Exact N-best Hypotheses for Multitarget Tracking. IEEE Trans. on AES 29(2), 555–560 (1993)
Miller, M.L., Stone, H.S., Cox, I.J.: Optimizing Murty’s Ranked Assignment Method. IEEE Trans. on AES 33(3), 851–862 (1997)
Pascoal, M., Captivo, M.E., Climaco, J.: A Note on a New Variant of Murty’s Ranking Assignments Algorithm. 4OR Journal 1, 243–255 (2003)
Ding, Z., Vandervies, D.: A Modified Murty’s Algorithm for Multiple Hypothesis Tracking. In: SPIE Sign. and Data Proc. of Small Targets, vol. 6236, (2006)
Fortunato, E., et al.: Generalized Murty’s Algorithm with Application to Multiple Hypothesis Tracking. In: Proc. of Fusion 2007, Québec, July 9-12, pp. 1–8 (2007)
Hamacher, H.W., Queyranne, M.: K-best Solutions to Combinatorial Optimization Problems. Annals of Operations Research (4), 123–143 (1985)
Dell’Amico, M., Toth, P.: Algorithms and Codes for Dense Assignment Problems: the State of the Art. Discrete Applied Mathematics 100, 17–48 (2000)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Smarandache, F., Dezert, J.: Advances and Applications of DSmT for Information Fusion, vols. 1, 2 & 3. ARP (2004–2009), http://www.gallup.unm.edu/~smarandache/DSmT.htm
Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66(2), 191–234 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dezert, J., Benameur, K. (2014). On the Quality of Optimal Assignment for Data Association. In: Cuzzolin, F. (eds) Belief Functions: Theory and Applications. BELIEF 2014. Lecture Notes in Computer Science(), vol 8764. Springer, Cham. https://doi.org/10.1007/978-3-319-11191-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-11191-9_41
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11190-2
Online ISBN: 978-3-319-11191-9
eBook Packages: Computer ScienceComputer Science (R0)