[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Conflict between Belief Functions: A New Measure Based on Their Non-conflicting Parts

  • Conference paper
Belief Functions: Theory and Applications (BELIEF 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8764))

Included in the following conference series:

Abstract

When combining belief functions by conjunctive rules of combination, conflicts often appear, which are assigned to empty set by the non-normalised conjunctive rule or normalised by Dempster’s rule of combination in Dempster-Shafer theory. Combination of conflicting belief functions and interpretation of their conflicts is often questionable in real applications; hence a series of alternative combination rules were suggested and a series of papers on conflicting belief functions have been published and conflicts of belief functions started to be investigated.

This theoretical contribution introduces a new definition of conflict between two belief functions on a general finite frame of discernment. Its idea is based on Hájek-Valdés algebraic analysis of belief functions, on our previous study of conflicts of belief functions, where internal conflicts of belief functions are distinguished from a conflict between belief functions, and on the decomposition of a belief function into its conflicting and non-conflicting parts. Basic properties of this newly defined conflict are presented, analyzed and briefly compared with our previous approaches to conflict as well as with Liu’s degree of conflict.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almond, R.G.: Graphical Belief Modeling. Chapman & Hall, London (1995)

    Book  Google Scholar 

  2. Ayoun, A., Smets, P.: Data association in multi-target detection using the transferable belief model. International Journal of Intelligent Systems 16(10), 1167–1182 (2001)

    Article  MATH  Google Scholar 

  3. Cobb, B.R., Shenoy, P.P.: A Comparison of Methods for Transforming Belief Function Models to Probability Models. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 255–266. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cuzzolin, F.: Lp consonant approximation of belief functions. IEEE Transactions on Fuzzy Systems 22(2), 420–436 (2014)

    Article  MathSciNet  Google Scholar 

  5. Daniel, M.: Algebraic structures related to Dempster-Shafer theory. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 51–61. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Daniel, M.: Distribution of Contradictive Belief Masses in Combination of Belief Functions. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Information, Uncertainty and Fusion, pp. 431–446. Kluwer Academic Publishers, Boston (2000)

    Chapter  Google Scholar 

  7. Daniel, M.: Probabilistic Transformations of Belief Functions. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 539–551. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Daniel, M.: Conflicts within and between Belief Functions. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 696–705. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Daniel, M.: Non-conflicting and Conflicting Parts of Belief Functions. In: Coolen, F., de Cooman, G., Fetz, T., Oberguggenberger, M. (eds.) ISIPTA 2011: Proceedings of the 7th ISIPTA, pp. 149–158. Studia Universitätsverlag, Innsbruck (2011)

    Google Scholar 

  10. Daniel, M.: Introduction to an Algebra of Belief Functions on Three-Element Frame of Discernment — A Quasi Bayesian Case. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part III. CCIS, vol. 299, pp. 532–542. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Daniel, M.: Properties of Plausibility Conflict of Belief Functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 235–246. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Daniel, M.: Belief Functions: A Revision of Plausibility Conflict and Pignistic Conflict. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 190–203. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Daniel, M.: An Interpretation of Conflicting Parts of Belief Functions on Two-Element Frame of Discrement. In: Kratochvíl, V., Vejnarová, J. (eds.) Proceedings of the 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (CJS 2013), pp. 187–196. University of Economics (2013)

    Google Scholar 

  14. Daniel, M.: Conflicts of Belief Functions: about a New Measure Based on their Non-Conflicting Parts. Technical report V-1205, ICS AS CR, Prague (2014)

    Google Scholar 

  15. Daniel, M., Ma, J.: Conflicts of Belief Functions: Continuity and Frame Resizement. In: Straccia, U., Cali, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 106–119. Springer, Heidelberg (2014)

    Google Scholar 

  16. Destercke, S., Burger, T.: Toward an axiomatic definition of conflict between belief functions. IEEE Transactions on Cybernetics 43(2), 585–596 (2013)

    Article  Google Scholar 

  17. Dubois, D., Prade, H.: Representation an combination of uncertainty with belief functions and possibility measures. Computational Intelligence 4, 244–264 (1988)

    Article  Google Scholar 

  18. Dubois, D., Prade, H.: Consonant Approximations of Belief Functions. International Journal of Approximate Reasoning 4, 419–649 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton (1992)

    Google Scholar 

  20. Hájek, P., Valdés, J.J.: Generalized algebraic foundations of uncertainty processing in rule-based expert syst (dempsteroids). Computers and Artificial Intelligence 10(1), 29–42 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Lefèvre, E., Elouedi, Z.: How to preserve the conflict as an alarm in the combination of belief functions? Decision Support Systems 56(1), 326–333 (2013)

    Article  Google Scholar 

  22. Liu, W.: Analysing the degree of conflict among belief functions. Artificial Intelligence 170, 909–924 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin, A.: About Conflict in the Theory of Belief Functions. In: Denœux, T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 161–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Roquel, A., Le Hégarat-Mascle, S., Bloch, I., Vincke, B.: Decomposition of conflict as a distribution on hypotheses in the framework on belief functions. International Journal of Approximate Reasoning 55(5), 1129–1146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schubert, J.: The Internal Conflict of a Belief Function. In: Denœux, T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 169–177. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  27. Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8, 387–412 (2007)

    Article  Google Scholar 

  28. Valdés, J.J.: Algebraic and logical foundations of uncertainty processing in rule-based expert systems of Artificial Intelligence. PhD Thesis, ČSAV, Prague (1987)

    Google Scholar 

  29. Yager, R.R.: On the Demspter-Shafer framework and new combination rules. Information Sciences 41, 93–138 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Daniel, M. (2014). Conflict between Belief Functions: A New Measure Based on Their Non-conflicting Parts. In: Cuzzolin, F. (eds) Belief Functions: Theory and Applications. BELIEF 2014. Lecture Notes in Computer Science(), vol 8764. Springer, Cham. https://doi.org/10.1007/978-3-319-11191-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11191-9_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11190-2

  • Online ISBN: 978-3-319-11191-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics