Abstract
This article describes a new personalization process on decisional queries through a new approach of triadic association rules mining. This process uses the query log files of users and models them in new way by taking into account their triadic aspect. To validate our approach, we developed a personalization software prototype P-TRIAR (Personalization based on TRIadic Association Rules) which extracts two types of rules from query log files. The first one will serve to query recommendation by taking into account the collaborative aspect of users during their decisional analysis. The second type of rules will enrich user queries. The approach is tested on a real data warehouse to show the compactness of triadic association rules and the refined personalization which we propose.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)
Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization framework for olap queries. In: DOLAP, pp. 9–18 (2005)
Biedermann, K.: How triadic diagrams represent conceptual structures. In: ICCS, pp. 304–317 (1997)
Cerf, L., Besson, J., Nguyen, T.K.N., Boulicaut, J.-F.: Closed and Noise-Tolerant Patterrns in N-ary Relations. Data Mining and Knowledge Discovery 26(3), 574–619 (2013)
Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for interactive database exploration. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 3–18. Springer, Heidelberg (2009)
Ganter, B., Obiedkov, S.A.: Implications in triadic formal contexts. In: ICCS, pp. 186–195 (2004)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer-Verlag New York, Inc. (1999), Franzke, C. (trans.)
Golfarelli, M., Rizzi, S., Biondi, P.: myolap: An approach to express and evaluate olap preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)
Khemiri, R., Bentayeb, F.: Interactive query recommendation assistant. In: 2012 23rd International Workshop on Database and Expert Systems Applications (DEXA), pp. 93–97. IEEE (2012)
Khemiri, R., Bentayeb, F.: Fimioqr: Frequent itemsets mining for interactive olap query recommendation. In: DBKDA 2013, pp. 9–14 (2013)
Koutrika, G., Ioannidis, Y.: Personalized queries under a generalized preference model. In: Proceedings of 21st International Conference on Data Engineering, ICDE 2005, pp. 841–852. IEEE (2005)
Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: ICCS, pp. 32–43 (1995)
Missaoui, R., Kwuida, L.: Mining triadic association rules from ternary relations. In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS, vol. 6628, pp. 204–218. Springer, Heidelberg (2011)
Nguyen, T.K.N.: Generalizing Association Rules in N-ary Relations: Application to Dynamic Graph Analysis. Phd thesis, INSA de Lyon (October 2012)
Pasquier, N.: Data Mining: algorithmes d’extraction et de réduction des règles d’association dans les bases de données. PhD thesis (January 2000)
Patrick, M., Elsa, N., et al.: A survey of query recommendation techniques for datawarehouse exploration. In: EDA 2011 (2011)
Stefanidis, K., Drosou, M., Pitoura, E.: You may also like results in relational databases. In: PersDB 2009, pp. 37–42 (2009)
Trabelsi, C., Jelassi, N., Yahia, S.B.: Bgrt: une nouvelle base générique de règles d’association triadiques. application à l’autocomplétion de requêtes dans les folksonomies. Document Numérique 15(1), 101–124 (2012)
Veloso, A., de Almeida, H.M., Gonçalves, M.A., Meira Jr., W.: Learning to rank at query-time using association rules. In: SIGIR, pp. 267–274 (2008)
Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)
Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)
Wille, R.: The basic theorem of triadic concept analysis. Order 12(2), 149–158 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ali, S.S., Boussaid, O., Bentayeb, F. (2014). P-TRIAR: Personalization Based on TRIadic Association Rules. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds) Advances in Databases and Information Systems. ADBIS 2014. Lecture Notes in Computer Science, vol 8716. Springer, Cham. https://doi.org/10.1007/978-3-319-10933-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-10933-6_18
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10932-9
Online ISBN: 978-3-319-10933-6
eBook Packages: Computer ScienceComputer Science (R0)