Abstract
We present a secure honest majority MPC protocol, against a static adversary, which aims to reduce the communication cost in the situation where there are a large number of parties and the number of adversarially controlled parties is relatively small. Our goal is to reduce the usage of point-to-point channels among the parties, thus enabling them to run multiple different protocol executions. Our protocol has highly efficient theoretical communication cost when compared with other protocols in the literature; specifically the circuit-dependent communication cost, for circuits of suitably large depth, is \(\mathcal{O}(|ckt|\kappa^7)\), for security parameter κ and circuit size |ckt|. Our protocol finds application in cloud computing scenario, where the fraction of corrupted parties is relatively small. By minimizing the usage of point-to-point channels, our protocol can enable a cloud service provider to run multiple MPC protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, M., Fehr, S.: Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 317–334. Springer, Heidelberg (2004)
Asharov, G., Lindell, Y.: A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation. IACR Cryptology ePrint Archive 2011, 136 (2011)
Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)
Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)
Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)
Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation how to run sublinear algorithms in a distributed setting. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013)
Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)
Canny, J., Sorkin, S.: Practical large-scale distributed key generation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 138–152. Springer, Heidelberg (2004)
Choudhury, A.: Breaking the \(\mathcal{O}(n|c|)\) barrier for unconditionally secure asynchronous multiparty computation - (extended abstract). In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 19–37. Springer, Heidelberg (2013)
Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multiparty Computation with Nearly Optimal Work and Resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)
Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)
Dani, V., King, V., Movahedi, M., Saia, J.: Brief Announcement: Breaking the O(nm) Bit Barrier, Secure Multiparty Computation with a Static Adversary. In: Principles of Distributed Computing, PODC 2012, pp. 227–228 (2012)
Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asynchronous secure multiparty computation. In: Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer, Heidelberg (2014)
Feige, U.: Noncryptographic selection protocols. In: FOCS, pp. 142–153 (1999)
Fitzi, M., Hirt, M.: Optimally Efficient Multi-valued Byzantine Agreement. In: Principles of Distributed Computing, PODC 2006, pp. 163–168. ACM (2006)
Franklin, M.K., Yung, M.: Communication Complexity of Secure Computation (Extended Abstract). In: Symposium on Theory of Computing, STOC 1992, pp. 699–710. ACM (1992)
Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast Asynchronous Byzantine Agreement and Leader Election with Full Information. ACM Transactions on Algorithms 6(4) (2010)
King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scalable Byzantine Agreement through Quorum Building, with Information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer, Heidelberg (2011)
King, V., Saia, J.: Breaking the O(n 2) Bit Barrier: Scalable Byzantine Agreement with an Adaptive Adversary. J. ACM 58(4), 18 (2011)
King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable Leader Election. In: SODA, pp. 990–999 (2006)
Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPT0 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Choudhury, A., Patra, A., Smart, N.P. (2014). Reducing the Overhead of MPC over a Large Population. In: Abdalla, M., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2014. Lecture Notes in Computer Science, vol 8642. Springer, Cham. https://doi.org/10.1007/978-3-319-10879-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-10879-7_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10878-0
Online ISBN: 978-3-319-10879-7
eBook Packages: Computer ScienceComputer Science (R0)