Abstract
We consider multistage control problem under fuzzy constraints on controls applied and fuzzy goals on states attained, with a stochastic system under control (a Markov chain). We seek an optimal sequence of controls which maximizes the probability of attaining the fuzzy goal subject to the fuzzy constraints, over a finite, fixed and specified planning horizon. We present an extension of Kacprzyk’s [10, 12] approach, based on a traditional genetic algorithm, by employing a bacterial evolutionary algorithm in the setting of Nawa and Furuhashi [18]. We show that it yields an improved efficiency, and potentials for future extensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Management Science 17, 141–164 (1970)
Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.: Genetic and bacterial programming for B-spline neural networks design. Journal of Advanced Computational Intelligence and Intelligent Informatics 11(2), 220–231 (2007)
Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.: Fuzzy rule extraction by bacterial memetic algorithms. International Journal of Intelligent Systems 24(3), 312–339 (2009)
Gál, L., Kóczy, L.T.: Advanced bacterial memetic algorithms. Acta Technica Jauriniensis, Series Intelligentia Combinatorica 1(3), 481–498 (2008)
Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review 12(4), 265–319 (2008)
Kacprzyk, J.: Multistage Decision Making under Fuzziness, Verlag TÜV Rheinland, Cologne (1983)
Kacprzyk, J.: Stochastic systems in fuzzy environments: control. In: Singh, M.G. (ed.) Systems and Control Encyclopedia, pp. 4657–4661. Pergamon Press, Oxford (1987)
Kacprzyk, J.: Multistage control under fuzziness using genetic algorithms. Control and Cybernetics 25, 1181–1215 (1996)
Kacprzyk, J.: Multistage Fuzzy Control. Wiley, Chichester (1997)
Kacprzyk, J.: Multistage control of a stochastic system under fuzzy goals and constraints using a genetic algorithm. In: Proceedings of IFSA 1997 – Seventh International Fuzzy Systems Association World Congress, Prague, Czech Rep., vol. II, pp. 306–311 (1997)
Kacprzyk, J.: A genetic algorithm for the multistage control of a fuzzy system in a fuzzy environment. Mathware and Soft Computing I(3) 219–232 (1997)
Kacprzyk, J.: Multistage control of a stochastic system in a fuzzy environment using a genetic algorithm. International Journal of Intelligent Systems 13, 1011–1023 (1998)
Kacprzyk, J.: Fuzzy dynamic programming: interpolative reasoning for an efficient derivation of optimal control policies. Control and Cybernetics 42(1), 63–84 (2013)
Kacprzyk, J., Staniewski, P.: A new approach to the control of stochastic systems in a fuzzy environment. Archiwum Automatyki i Telemechaniki XXV, 433–443 (1980)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Michalewicz, Z., Janikow, C.: Genetic algorithms for numerical optimization. Statistics and Computing 1, 75–91 (1991)
Nawa, N.E., Furuhashi, T., Hashiyama, T., Uchikawa, Y.: A Study on the discovery of relevant fuzzy rules using pseudo-bacterial genetic algorithm. IEEE Trans. on Industrial Electronics 46(6), 1080–1089 (1999)
Nawa, N.E., Furuhashi, T.: Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Transactions on Fuzzy Systems 7(5), 608–616 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kacprzyk, J. (2015). Multistage Fuzzy Control of a Stochastic System Using a Bacterial Genetic Algorithm. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M. (eds) Strengthening Links Between Data Analysis and Soft Computing. Advances in Intelligent Systems and Computing, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-319-10765-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-10765-3_32
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10764-6
Online ISBN: 978-3-319-10765-3
eBook Packages: EngineeringEngineering (R0)