[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multistage Fuzzy Control of a Stochastic System Using a Bacterial Genetic Algorithm

  • Chapter
Strengthening Links Between Data Analysis and Soft Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 315))

  • 759 Accesses

Abstract

We consider multistage control problem under fuzzy constraints on controls applied and fuzzy goals on states attained, with a stochastic system under control (a Markov chain). We seek an optimal sequence of controls which maximizes the probability of attaining the fuzzy goal subject to the fuzzy constraints, over a finite, fixed and specified planning horizon. We present an extension of Kacprzyk’s [10, 12] approach, based on a traditional genetic algorithm, by employing a bacterial evolutionary algorithm in the setting of Nawa and Furuhashi [18]. We show that it yields an improved efficiency, and potentials for future extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Management Science 17, 141–164 (1970)

    Article  MathSciNet  Google Scholar 

  2. Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.: Genetic and bacterial programming for B-spline neural networks design. Journal of Advanced Computational Intelligence and Intelligent Informatics 11(2), 220–231 (2007)

    Google Scholar 

  3. Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.: Fuzzy rule extraction by bacterial memetic algorithms. International Journal of Intelligent Systems 24(3), 312–339 (2009)

    Article  MATH  Google Scholar 

  4. Gál, L., Kóczy, L.T.: Advanced bacterial memetic algorithms. Acta Technica Jauriniensis, Series Intelligentia Combinatorica 1(3), 481–498 (2008)

    Google Scholar 

  5. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review 12(4), 265–319 (2008)

    Article  Google Scholar 

  6. Kacprzyk, J.: Multistage Decision Making under Fuzziness, Verlag TÜV Rheinland, Cologne (1983)

    Google Scholar 

  7. Kacprzyk, J.: Stochastic systems in fuzzy environments: control. In: Singh, M.G. (ed.) Systems and Control Encyclopedia, pp. 4657–4661. Pergamon Press, Oxford (1987)

    Google Scholar 

  8. Kacprzyk, J.: Multistage control under fuzziness using genetic algorithms. Control and Cybernetics 25, 1181–1215 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Kacprzyk, J.: Multistage Fuzzy Control. Wiley, Chichester (1997)

    Google Scholar 

  10. Kacprzyk, J.: Multistage control of a stochastic system under fuzzy goals and constraints using a genetic algorithm. In: Proceedings of IFSA 1997 – Seventh International Fuzzy Systems Association World Congress, Prague, Czech Rep., vol. II, pp. 306–311 (1997)

    Google Scholar 

  11. Kacprzyk, J.: A genetic algorithm for the multistage control of a fuzzy system in a fuzzy environment. Mathware and Soft Computing I(3) 219–232 (1997)

    Google Scholar 

  12. Kacprzyk, J.: Multistage control of a stochastic system in a fuzzy environment using a genetic algorithm. International Journal of Intelligent Systems 13, 1011–1023 (1998)

    Article  Google Scholar 

  13. Kacprzyk, J.: Fuzzy dynamic programming: interpolative reasoning for an efficient derivation of optimal control policies. Control and Cybernetics 42(1), 63–84 (2013)

    MathSciNet  Google Scholar 

  14. Kacprzyk, J., Staniewski, P.: A new approach to the control of stochastic systems in a fuzzy environment. Archiwum Automatyki i Telemechaniki XXV, 433–443 (1980)

    Google Scholar 

  15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)

    Google Scholar 

  16. Michalewicz, Z., Janikow, C.: Genetic algorithms for numerical optimization. Statistics and Computing 1, 75–91 (1991)

    Article  Google Scholar 

  17. Nawa, N.E., Furuhashi, T., Hashiyama, T., Uchikawa, Y.: A Study on the discovery of relevant fuzzy rules using pseudo-bacterial genetic algorithm. IEEE Trans. on Industrial Electronics 46(6), 1080–1089 (1999)

    Article  Google Scholar 

  18. Nawa, N.E., Furuhashi, T.: Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Transactions on Fuzzy Systems 7(5), 608–616 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Kacprzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kacprzyk, J. (2015). Multistage Fuzzy Control of a Stochastic System Using a Bacterial Genetic Algorithm. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M. (eds) Strengthening Links Between Data Analysis and Soft Computing. Advances in Intelligent Systems and Computing, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-319-10765-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10765-3_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10764-6

  • Online ISBN: 978-3-319-10765-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics