[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

The comparison of random variables can be made by means of stochastic orders such as expected utility or statistical preference. One possible model when the random variables are imprecisely observed is to consider fuzzy random variables, so that the images become fuzzy sets. This paper proposes two comparison methods for fuzzy random variables: one based on fuzzy rankings and another one that uses the extensions of stochastic orders to an imprecise framework. The particular case where the images of the fuzzy random variables are triangular fuzzy numbers is investigated.We illustrate our results by means of a decision making problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cascos, I., Molchanov, I.: A stochastic order for random vectors and random sets based on the Aumann expectation. Stat. Prob. Lett 63, 295–305 (2003)

    Article  MATH  Google Scholar 

  2. De Schuymer, B., De Meyer, H., De Baets, B.: A fuzzy approach to stochastic dominance of random variables. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 253–260. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. De Schuymer, B., De Meyer, H., De Baets, B., Jenei, S.: On the cycle-transitivity of the dice model. Theory and Decision 54, 261–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dengjie, Z.: The limit theorems for expectation of fuzzy random variables. Int. Journal of Pure and Applied Mathematics 54(4), 489–496 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Information Sciences 30, 183–224 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kruse, R., Meyer, D.R.: Statistics with vague data. Reidel Publishing Company (1987)

    Google Scholar 

  7. Loquin, K., Dubois, D.: Kriging and epistemic uncertainty: A critical discussion. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 269–305. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Merigó, J.M., Casanovas, M., Yang, J.-B.: Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators. European Journal of Operational Research 235, 215–224 (2014)

    Article  MathSciNet  Google Scholar 

  9. Montes, I., Miranda, E., Montes, S.: Decision making with imprecise probabilities and utilities by means of statistical preference and stochastic dominance. European Journal of Operational Research 234(1), 209–220 (2014)

    Article  MathSciNet  Google Scholar 

  10. Montes, I., Miranda, E., Montes, S.: Stochastic dominance with imprecise information. Computational Statistics and Data Analysis 71, 868–886 (2014)

    Article  MathSciNet  Google Scholar 

  11. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley (2002)

    Google Scholar 

  12. Puri, M.L., Ralescu, D.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Montes, I., Miranda, E., Montes, S. (2015). Stochastic Orders for Fuzzy Random Variables. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M. (eds) Strengthening Links Between Data Analysis and Soft Computing. Advances in Intelligent Systems and Computing, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-319-10765-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10765-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10764-6

  • Online ISBN: 978-3-319-10765-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics