[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Numerical Investigation of Convergence Rates for the FEM Approximation of 3D-1D Coupled Problems

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

  • 3337 Accesses

Abstract

We consider the numerical approximation of second order elliptic equations with singular forcing terms. In particular we investigate the case where a Dirac measure on a one-dimensional (1D) manifold is the forcing term for a three-dimensional (3D) problem. A partial differential equation is also defined on the manifold. The two problems are coupled by means of the intensity of the Dirac measure, which depends on both solutions. Such a problem is used to model the interaction of microcirculation and interstitial flow at the microscale, where the complicated geometrical configuration of the capillary network is taken into account. In order to facilitate the numerical discretization, the capillary bed is modeled as a collection of connected one-dimensional manifolds able to carry blood flow. We apply the finite element method (FEM) to discretize the equations in the interstitial volume and the capillary network. Because of the singular forcing terms, the solution of the coupled problem is not regular enough to apply the standard error analysis. A novel theoretical framework has been recently proposed to analyze elliptic problems with Dirac right hand sides. Using numerical experiments, in this work we investigate the validity of the available error estimates in the more general case of 3D-1D coupled problems, where the 1D problem acts as a concentrated source embedded in the surrounding volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Cattaneo, P. Zunino, Computational models for fluid exchange between microcirculation and tissue interstitium, Netw. Heterog. Media 9(1), 135–159 (2014)

    Article  MathSciNet  Google Scholar 

  2. L. Cattaneo, P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments, Int. J. Numer. Meth. Biomed. Engng. (2014) DOI: 10.1002/cnm.2661

    Google Scholar 

  3. C. D’Angelo, Multiscale modeling of metabolism and transport phenomena in living tissues, Phd thesis, 2007

    Google Scholar 

  4. C. D’Angelo, Finite element approximation of elliptic problems with dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. C. D’Angelo, A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8), 1481–1504 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. K.O. Hicks, F.B. Pruijn, T.W. Secomb, M.P. Hay, R. Hsu, J.M. Brown, W.A. Denny, M.W. Dewhirst, W.R. Wilson, Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J. Natl. Cancer Inst. 98(16), 1118–1128 (2006)

    Article  Google Scholar 

  7. T. Koeppl, B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52(4), 1753–1769 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Lee, T.C. Skalak, Microvascular Mechanics: Hemodynamics of Systemic and Pulmonary Microcirculation (Springer, New York, 1989)

    Book  Google Scholar 

  9. W.K. Liu, Y. Liu et al., Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195(13–16), 1722–1749 (2006)

    Article  MATH  Google Scholar 

  10. T.W. Secomb, R. Hsu, R.D. Braun, J.R. Ross, J.F. Gross, M.W. Dewhirst, Theoretical simulation of oxygen transport to tumors by three-dimensional networks of microvessels. Adv. Exp. Med. Biol. 454, 629–634 (1998)

    Article  Google Scholar 

  11. T.W. Secomb, R. Hsu, E.Y.H. Park, M.W. Dewhirst, Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32(11), 1519–1529 (2004)

    Article  Google Scholar 

  12. Q. Sun, G.X. Wu, Coupled finite difference and boundary element methods for fluid flow through a vessel with multibranches in tumours. Int. J. Numer. Methods Biomed. Eng. 29(3), 309–331 (2013)

    Article  MathSciNet  Google Scholar 

  13. L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Immersed finite element method. Comput. Methods Appl. Mech. Eng. 193(21–22), 2051–2067 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cattaneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cattaneo, L., Zunino, P. (2015). Numerical Investigation of Convergence Rates for the FEM Approximation of 3D-1D Coupled Problems. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_72

Download citation

Publish with us

Policies and ethics