[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Shape Retrieval and Classification Rates through Low-Dimensional Features Fusion

  • Conference paper
Image Processing & Communications Challenges 6

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 313))

  • 1315 Accesses

Abstract

In the paper an approach to shape classification and shape retrieval is described. Although, most of available shape descriptors give a very good recognition accuracy or retrieval rate, they suffer from one serious limitation, namely, they do not take into account the dimensionality of feature space, hence the computational costs of similarity evaluation is rather high. The problem occurs often in the hardware implementations, where the complexity of processed data should be minimized. Hence we propose a method of joining low-dimensional feature vectors derived from shapes to increase the retrieval rate and classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Idirs, F., Panchanathan, S.: Review of Image and Video Indexing Techniques. Journal of Visual Communication and Image Representation 8(2), 146–166 (1997)

    Article  Google Scholar 

  2. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)

    Article  MATH  Google Scholar 

  3. Mehtre, B.M., Kankanhalli, M.S., Lee, W.F.: measures for content based image retrieval: a comparison. Information Proc. & Management 33, 319–337 (1997)

    Article  Google Scholar 

  4. Frejlichowski, D., Forczmański, P.: General Shape Analysis Applied to Stamps Retrieval from Scanned Documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS (LNAI), vol. 6304, pp. 251–260. Springer, Heidelberg (2010)

    Google Scholar 

  5. Kapela, R., Rybarczyk, A.: Real-time shape description system based on MPEG-7 descriptors. J. Syst. Archit. 53(9), 602–618 (2007)

    Article  Google Scholar 

  6. Kapela, R., Sniatala, P., Rybarczyk, A.: Real-time visual content description system based on MPEG-7 descriptors. Multimedia Tools Appl. 53(1), 119–150 (2011)

    Article  Google Scholar 

  7. Forczmański, P., Dziurzański, P.: System-Level Hardware Implementation of Simplified Low-Level Color Image Descriptor. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 461–468. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode (Diffraction theory of the cut procedure and its improved form, the phase contrast method). Physica 1, 689–704 (1934)

    Article  MATH  Google Scholar 

  9. Teague, M.R.: Image analysis via the general theory of moments. Journal of the Optical Society of America 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  10. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  11. Zhang, W., Sun, J., Tang, X.: Cat Head Detection - How to Effectively Exploit Shape and Texture Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 802–816. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Mitsui, T., Fujiyoshi, H.: Object Detection by Joint Features based on Two-Stage Boosting. Visual Surveillance (2009)

    Google Scholar 

  13. Jeannin, S., Bober, M.: Description of core experiments for MPEG-7 motion/shape. Technical Report ISO/IEC JTC 1/SC 29/WG 11 MPEG99/N2690 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Forczmański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Forczmański, P. (2015). Improving Shape Retrieval and Classification Rates through Low-Dimensional Features Fusion. In: Choraś, R. (eds) Image Processing & Communications Challenges 6. Advances in Intelligent Systems and Computing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-10662-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10662-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10661-8

  • Online ISBN: 978-3-319-10662-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics