Abstract
In the paper an approach to shape classification and shape retrieval is described. Although, most of available shape descriptors give a very good recognition accuracy or retrieval rate, they suffer from one serious limitation, namely, they do not take into account the dimensionality of feature space, hence the computational costs of similarity evaluation is rather high. The problem occurs often in the hardware implementations, where the complexity of processed data should be minimized. Hence we propose a method of joining low-dimensional feature vectors derived from shapes to increase the retrieval rate and classification accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Idirs, F., Panchanathan, S.: Review of Image and Video Indexing Techniques. Journal of Visual Communication and Image Representation 8(2), 146–166 (1997)
Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)
Mehtre, B.M., Kankanhalli, M.S., Lee, W.F.: measures for content based image retrieval: a comparison. Information Proc. & Management 33, 319–337 (1997)
Frejlichowski, D., Forczmański, P.: General Shape Analysis Applied to Stamps Retrieval from Scanned Documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS (LNAI), vol. 6304, pp. 251–260. Springer, Heidelberg (2010)
Kapela, R., Rybarczyk, A.: Real-time shape description system based on MPEG-7 descriptors. J. Syst. Archit. 53(9), 602–618 (2007)
Kapela, R., Sniatala, P., Rybarczyk, A.: Real-time visual content description system based on MPEG-7 descriptors. Multimedia Tools Appl. 53(1), 119–150 (2011)
Forczmański, P., Dziurzański, P.: System-Level Hardware Implementation of Simplified Low-Level Color Image Descriptor. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 461–468. Springer, Heidelberg (2013)
Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode (Diffraction theory of the cut procedure and its improved form, the phase contrast method). Physica 1, 689–704 (1934)
Teague, M.R.: Image analysis via the general theory of moments. Journal of the Optical Society of America 70(8), 920–930 (1980)
Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Zhang, W., Sun, J., Tang, X.: Cat Head Detection - How to Effectively Exploit Shape and Texture Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 802–816. Springer, Heidelberg (2008)
Mitsui, T., Fujiyoshi, H.: Object Detection by Joint Features based on Two-Stage Boosting. Visual Surveillance (2009)
Jeannin, S., Bober, M.: Description of core experiments for MPEG-7 motion/shape. Technical Report ISO/IEC JTC 1/SC 29/WG 11 MPEG99/N2690 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Forczmański, P. (2015). Improving Shape Retrieval and Classification Rates through Low-Dimensional Features Fusion. In: Choraś, R. (eds) Image Processing & Communications Challenges 6. Advances in Intelligent Systems and Computing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-10662-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-10662-5_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10661-8
Online ISBN: 978-3-319-10662-5
eBook Packages: EngineeringEngineering (R0)