[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Linked Data Recommender System Using a Neighborhood-Based Graph Kernel

  • Conference paper
E-Commerce and Web Technologies (EC-Web 2014)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 188))

Included in the following conference series:

Abstract

The ultimate mission of a Recommender System (RS) is to help users discover items they might be interested in. In order to be really useful for the end-user, Content-based (CB) RSs need both to harvest as much information as possible about such items and to effectively handle it. The boom of Linked Open Data (LOD) datasets with their huge amount of semantically interrelated data is thus a great opportunity for boosting CB-RSs. In this paper we present a CB-RS that leverages LOD and profits from a neighborhood-based graph kernel. The proposed kernel is able to compute semantic item similarities by matching their local neighborhood graphs. Experimental evaluation on the MovieLens dataset shows that the proposed approach outperforms in terms of accuracy and novelty other competitive approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellogín, A., Cantador, I., Castells, P.: A study of heterogeneity in recommendations for a social music service. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2010, pp. 1–8. ACM Press, New York (2010)

    Chapter  Google Scholar 

  2. Cantador, I., Bellogín, A., Castells, P.: A multilayer ontology-based hybrid recommendation model. AI Commun. Special Issue on Rec. Sys. 21(2-3), 203–210 (2008)

    Google Scholar 

  3. de Vries, G.K.D.: A fast approximation of the weisfeiler-lehman graph kernel for RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS (LNAI), vol. 8188, pp. 606–621. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the web of data in model-based recommender systems. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 253–256. ACM, New York (2012)

    Google Scholar 

  5. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS 2012, pp. 1–8. ACM, New York (2012)

    Google Scholar 

  6. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: COLT, pp. 129–143 (2003)

    Google Scholar 

  7. Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recommender systems. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence (2010)

    Google Scholar 

  8. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  9. Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S., Tao, S.: Neighborhood based fast graph search in large networks. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, pp. 901–912. ACM, New York (2011)

    Google Scholar 

  10. Khrouf, H., Troncy, R.: Hybrid event recommendation using linked data and user diversity. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 185–192. ACM, New York (2013)

    Chapter  Google Scholar 

  11. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 134–148. Springer, Heidelberg (2012)

    Google Scholar 

  12. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: How accuracy metrics have hurt recommender systems. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2006, pp. 1097–1101. ACM, New York (2006)

    Google Scholar 

  13. Middleton, S.E., Roure, D.D., Shadbolt, N.R.: Ontology-based recommender systems. In: Handbook on Ontologies, vol. 32(6), pp. 779–796 (2009)

    Google Scholar 

  14. Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)

    Google Scholar 

  15. Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations from implicit feedback leveraging linked open data. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 85–92. ACM, New York (2013)

    Chapter  Google Scholar 

  16. Ostuni, V.C., Gentile, G., Di Noia, T., Mirizzi, R., Romito, D., Di Sciascio, E.: Mobile movie recommendations with linked data. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 400–415. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Peska, L., Vojtas, P.: Using linked open data to improve recommending on e-commerce. In: 2nd International Workshop on Semantic Technologies meet Recommender Systems & Big Data (SeRSy 2013). CEUR-WS (2013)

    Google Scholar 

  19. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  20. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E. (2014). A Linked Data Recommender System Using a Neighborhood-Based Graph Kernel. In: Hepp, M., Hoffner, Y. (eds) E-Commerce and Web Technologies. EC-Web 2014. Lecture Notes in Business Information Processing, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-10491-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10491-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10490-4

  • Online ISBN: 978-3-319-10491-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics