[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-agent Environment Exploration with AR.Drones

  • Conference paper
Advances in Autonomous Robotics Systems (TAROS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8717))

Included in the following conference series:

Abstract

This paper describes work on a framework for multi-agent research using low cost Micro Aerial Vehicles (MAV’s). In the past this type of research has required significant investment for both the vehicles themselves and the infrastructure necessary to safely conduct experiments. We present an alternative solution using a robust, low cost, off the shelf platform. We demonstrate the capabilities of our system via two typical multi-robot tasks: obstacle avoidance and exploration. Developing multi-agent applications safely and quickly can be difficult using hardware alone, to address this we also present a multi-quadcopter simulation based around the Gazebo 3D simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  2. Castle, R., Klein, G., Murray, D.W.: Video-rate localization in multiple maps for wearable augmented reality. In: 12th IEEE International Symposium on Wearable Computers, ISWC 2008, pp. 15–22. IEEE (2008)

    Google Scholar 

  3. Conroy, P., Bareiss, D., Beall, M., van den Berg, J.: 3-d reciprocal collision avoidance on physical quadrotor helicopters with on-board sensing for relative positioning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013) (submitted)

    Google Scholar 

  4. Dijkshoorn, N.: Simultaneous localization and mapping with the ar. drone. Ph.D. thesis, Masters thesis, Universiteit van Amsterdam (2012)

    Google Scholar 

  5. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. IMU 320, 240 (2012)

    Google Scholar 

  6. Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robotics and Autonomous Systems (2014)

    Google Scholar 

  7. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760–772 (1998)

    Article  Google Scholar 

  8. Hennes, D., Claes, D., Meeussen, W., Tuyls, K.: Multi-robot collision avoidance with localization uncertainty. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 147–154. International Foundation for Autonomous Agents and Multiagent Systems (2012)

    Google Scholar 

  9. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  10. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 225–234. IEEE (2007)

    Google Scholar 

  11. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  12. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive simulation of quadrotor uavs using ros and gazebo. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 400–411. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: An open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)

    Google Scholar 

  14. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Sa, I., He, H., Huynh, V., Corke, P.: Monocular vision based autonomous navigation for a cost-effective mav in gps-denied environments. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1355–1360. IEEE (2013)

    Google Scholar 

  16. Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Campoy, P.: Visual quadrotor swarm for imav 2013 indoor competition. In: ROBOT 2013: First Iberian Robotics Conference, pp. 55–63. Springer International Publishing (2014)

    Google Scholar 

  17. Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic robotics, vol. 1, pp. 48–54. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  18. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, pp. 146–151. IEEE (1997)

    Google Scholar 

  20. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)

    Google Scholar 

  21. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: The shared vision system for the robocup small size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 425–436. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Williams, R., Konev, B., Coenen, F. (2014). Multi-agent Environment Exploration with AR.Drones. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science(), vol 8717. Springer, Cham. https://doi.org/10.1007/978-3-319-10401-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10401-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10400-3

  • Online ISBN: 978-3-319-10401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics