Abstract
This paper describes work on a framework for multi-agent research using low cost Micro Aerial Vehicles (MAV’s). In the past this type of research has required significant investment for both the vehicles themselves and the infrastructure necessary to safely conduct experiments. We present an alternative solution using a robust, low cost, off the shelf platform. We demonstrate the capabilities of our system via two typical multi-robot tasks: obstacle avoidance and exploration. Developing multi-agent applications safely and quickly can be difficult using hardware alone, to address this we also present a multi-quadcopter simulation based around the Gazebo 3D simulator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935. IEEE (2008)
Castle, R., Klein, G., Murray, D.W.: Video-rate localization in multiple maps for wearable augmented reality. In: 12th IEEE International Symposium on Wearable Computers, ISWC 2008, pp. 15–22. IEEE (2008)
Conroy, P., Bareiss, D., Beall, M., van den Berg, J.: 3-d reciprocal collision avoidance on physical quadrotor helicopters with on-board sensing for relative positioning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013) (submitted)
Dijkshoorn, N.: Simultaneous localization and mapping with the ar. drone. Ph.D. thesis, Masters thesis, Universiteit van Amsterdam (2012)
Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. IMU 320, 240 (2012)
Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robotics and Autonomous Systems (2014)
Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research 17(7), 760–772 (1998)
Hennes, D., Claes, D., Meeussen, W., Tuyls, K.: Multi-robot collision avoidance with localization uncertainty. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 147–154. International Foundation for Autonomous Agents and Multiagent Systems (2012)
Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)
Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 225–234. IEEE (2007)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, vol. 3, pp. 2149–2154. IEEE (2004)
Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive simulation of quadrotor uavs using ros and gazebo. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 400–411. Springer, Heidelberg (2012)
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: An open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)
Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Sa, I., He, H., Huynh, V., Corke, P.: Monocular vision based autonomous navigation for a cost-effective mav in gps-denied environments. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1355–1360. IEEE (2013)
Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Campoy, P.: Visual quadrotor swarm for imav 2013 indoor competition. In: ROBOT 2013: First Iberian Robotics Conference, pp. 55–63. Springer International Publishing (2014)
Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic robotics, vol. 1, pp. 48–54. MIT Press, Cambridge (2005)
van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011)
Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, pp. 146–151. IEEE (1997)
Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)
Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: The shared vision system for the robocup small size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 425–436. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Williams, R., Konev, B., Coenen, F. (2014). Multi-agent Environment Exploration with AR.Drones. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science(), vol 8717. Springer, Cham. https://doi.org/10.1007/978-3-319-10401-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-10401-0_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10400-3
Online ISBN: 978-3-319-10401-0
eBook Packages: Computer ScienceComputer Science (R0)