Abstract
This chapter presents a new document image segmentation algorithm, called Cluster Variance Segmentation (CVSEG). The method is based on the analysis of the tiles suspected to be part of an image and filtering them subsequently. In the end, the results are enhanced through a reconstruction stage. I present the design of the algorithm as well as the test results on various document images. The experiments validate the efficacy and efficiency of the proposed approach when compared with other algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pujari, A.K., Dhanunjaya Naidu, C., Sreenivasa Rao, M., Jinaga, B.C.: An intelligent character recognizer for Telugu scripts using multiresolution analysis and associative memory. Image and Vision Computing 22(14), 1221–1227 (2004)
Cai, K., Bu, J., Chen, C., Huang, P.: An automatic approach for efficient text segmentation. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 417–424. Springer, Heidelberg (2006)
Yang, J., Kang, J., Choi, J.: A focused crawler with document segmentation. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 94–101. Springer, Heidelberg (2005)
Zhanga, X., Lyu, M.R., Dai, G.-Z.: Extraction and segmentation of tables from Chinese ink documents based on a matrix model. Pattern Recognition 40(7), 1855–1867 (2007)
Roy, P.P., Pal, U., Lladós, J.: Document seal detection using GHT and character proximity graphs. Pattern Recognition 44(6), 1282–1295 (2011)
Xia, Y., Xiao, B.H., Wang, C.H., Li, Y.D.: Segmentation of mixed Chinese/English documents based on Chinese Radicals recognition and complexity analysis in local segment pattern. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition. LNCIS, vol. 345, pp. 497–506. Springer, Heidelberg (2006)
Sas, J., Markowska-Kaczmar, U.: Similarity-based training set acquisition for continuous handwriting recognition. Information Sciences 191, 226–244 (2012)
Tsai, C.M.: Intelligent region-based thresholding for color document images with highlighted regions. Pattern Recognition 45(4), 1341–1362 (2012)
Tonazzini, A., Vezzosi, S., Bedini, L.: Analysis and recognition of highly degraded printed characters. Document Analysis and Recognition 6(4), 236–247 (2003)
Fonseca, M.J., Pimentel, C., Jorge, J.A.: CALI: An online scribble recognizer for calligraphic interfaces. In: AAAI Spring Symposium on Sketch Understanding, pp. 51–58 (2002)
Papamarkos, N.: A neuro-fuzzy technique for document binarisation. Neural Computing & Applications 12(3-4), 190–199 (2003)
Chen, N., Blostein, D.: A survey of document image classification: problem statement, classifier architecture and performance evaluation. International Journal of Document Analysis and Recognition (IJDAR) 10(1), 1–16 (2007)
Bloomberg, D.S.: Multiresolution morphological approach to document image analysis. In: Proc. of the International Conference on Document Analysis and Recognition, Saint-Malo, France (1991)
Bukhari, S.S., Shafait, F., Breuel, T.M.: Improved document image segmentation algorithm using multiresolution morphology. In: IS&T/SPIE Electronic Imaging, pp. 78740D-78740D. International Society for Optics and Photonics (2011)
Ha, J., Haralick, R., Phillips, I.T.: Recursive XY cut using bounding boxes of connected components. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 2, pp. 952–955. IEEE (1995)
Antonacopoulos, A., Bridson, D., Papadopoulos, C.: Page Segmentation Competition. In: ICDAR 2007 (2007), http://www.primaresearch.org/ICDAR2007_competition/
Sauvola, J., Seppanen, T., Haapakoski, S., Pietikainen, M.: Adaptive document binarization. In: Proceedings of the Fourth International Conference on Document Analysis and Recognition, vol. 1, pp. 147–152. IEEE (1997)
Google. Ocropus, http://code.google.com/p/ocropus (April 21, 2013)
Bloomberg, D.S.: libleptonica, http://www.ubuntuupdates.org/package/core/precise/universe/base/libleptonica (March 6, 2012)
Google, Inc. Tesseract (2013), http://en.wikipedia.org/wiki/Tesseract_%28software%29
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ilie, M.B. (2015). Document Image Segmentation through Clustering and Connectivity Analysis. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) New Research in Multimedia and Internet Systems. Advances in Intelligent Systems and Computing, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-319-10383-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-10383-9_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10382-2
Online ISBN: 978-3-319-10383-9
eBook Packages: EngineeringEngineering (R0)