[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Preliminary Cooperative Genetic Fuzzy Proposal for Epilepsy Identification Using Wearable Devices

  • Conference paper
  • First Online:
10th International Conference on Soft Computing Models in Industrial and Environmental Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 368))

Abstract

The epilepsy is one of the neurological disorders that affects people of all socioeconomic groups and ages. An incorrect treatment or a lack in monitoring might produce cognitive damage and depression. In previous work we presented a preliminary method for learning a generalized model to identify epilepsy episodes using 3DACC wearable devices placed on the dominant wrist of the subject. The model was based on a Fuzzy Finite State Machines to detect the epilepsy episodes in 3DACC time series. The learning model applied was a classical Genetic Fuzzy Finite State Machine. The goal of the present work is to adapt the previous learning scheme to a Cooperative Coevolutionary Genetic Fuzzy Finite State Machine to improve the classification results. The obtained results show that a Cooperative proposal outperform moderately the results of the original proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Villanueva V, Girón J, Martín J, Hernández-Pastor L, Lahuerta J, Doz M, Lévy-Bachelot MCL (2013) Quality of life and economic impact of refractory epilepsy in spain: the espera study. Neurologia 28(4):195–204

    Article  Google Scholar 

  2. Engel JJ (2001) International league against epilepsy (ilae). a proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ilae task force on classification and terminology. Epilepsia 42(6):796–803

    Article  Google Scholar 

  3. Shorvon S (2010) Handbook of epilepsy treatment. Wiley-Blackwell

    Google Scholar 

  4. Stefanescu RA, Shivakeshavan R, Talathi SS (2012) Computational models of epilepsy. Seizure 21(10):748–759

    Article  Google Scholar 

  5. Holt AB, Netoff TI (2013) Computational modeling of epilepsy for an experimental neurologist. Exp Neurol 244(0):75–86 (Special Issue: Epilepsy)

    Google Scholar 

  6. Becq G, Bonnet S, Minotti L, Antonakios M, Guillemaud R, Kahane P (2011) Classification of epileptic motor manifestations using inertial and magnetic sensors. Comput Biol Med 41(1):46–55

    Article  Google Scholar 

  7. Ramgopal S, Thome-Souza S, Jackson M, Kadish NE, Fernndez IS, Klehm J, Bosl W, Reinsberger C, Schachter S, Loddenkemper T (2014) Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav 37:291–307

    Article  Google Scholar 

  8. Van de Vel A et al (2011) P26.3 accelerometers for detection of motor seizures during sleep in pediatric patients with epilepsy. Eur J Paediatr Neurol 15(Supplement 1(0)):S134

    Google Scholar 

  9. Lockman J, Fisher RS, Olson DM (2011) Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav 20(4):638–641

    Article  Google Scholar 

  10. Schulc E, Unterberger I, Saboor S, Hilbe J, Ertl M, Ammenwerth E, Trinka E, Them C (2011) Measurement and quantification of generalized tonic-clonic seizures in epilepsy patients by means of accelerometry- an explorative study. Epilepsy Res 95(1–2):920–1211

    Google Scholar 

  11. Villar JR, Menéndez M, de la Cal E, González VM, Sedano J (2015) Obtaining general models for epilepsy episode recognitions. Inf Sci (2015 submitted)

    Google Scholar 

  12. Casillas Jorge, Cordón Óscar, Herrera Francisco, Merelo Juan Julián (2002) Cooperative Coevolution for Learning Fuzzy Rule-Based Systems. In: Collet Philippe, Fonlupt Cyril, Hao J-K, Lutton Evelyne, Schoenauer Marc (eds) EA 2001, vol 2310., LNCSSpringer, Heidelberg, pp 311–322

    Chapter  Google Scholar 

  13. Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intell 1(1):27–46

    Article  MathSciNet  Google Scholar 

  14. Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems (genetic and evolutionary computation). Springer

    Google Scholar 

  15. Patel S, Park H, Bonato P, Chan L, Rodgers M (2012) A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation 9 (April 2012) 21+

    Google Scholar 

  16. Cogan D, Pouyan M, Nourani M, Harvey J (2014) A wrist-worn biosensor system for assessment of neurological status. In: 36th annual international conference of the IEEE engineering in medicine and biology society 5748–5751

    Google Scholar 

  17. Silva CJP, Rémi J, Vollmar C, Fernandes J, Gonzalez-Victores J, Noachtar S (2013) Upper limb automatisms differ quantitatively in temporal and frontal lobe epilepsies. Epilepsy Behav 27(2):404–408

    Article  Google Scholar 

  18. Bonnet S, Jallon P, Bourgerette A, Antonakios M, Guillemaud R, Caritu Y, Becq G, Kahane P, Chapat P, Thomas-Vialettes B, Thomas-Vialettes F, Gerbi D, Ejnes D (2011) An ethernet motion-sensor based alarm system for epilepsy monitoring. IRBM 32(2):155–157

    Google Scholar 

  19. Van de Vel A et al (2013) Long-term home monitoring of hypermotor seizures by patient-worn accelerometers. Epilepsy Behav 26(1):118–125

    Article  Google Scholar 

  20. Poh M, Loddenkemper T, Reinsberger C, Swenson N, Goyal S, Sabtala M, Madsen J, Picard R (2012) Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 5(53):93–97

    Article  Google Scholar 

  21. Nijsen T, Aarts R, Cluitmans P, Griep P (2010) Time-frequency analysis of accelerometry data for detection of myoclonic seizures. IEEE Trans Inf Technol Biomed 14:1197–1203

    Article  Google Scholar 

  22. Beniczky S, Polster T, Kjaer T, Hjalgrim H (2013) Detection of generalized tonicclonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia 4(54):e58–61

    Article  Google Scholar 

  23. Kramer U, Kipervasser S, Shlitner A, Kuzniecky R (2011) A novel portable seizure detection alarm system: preliminary results. J Clin Neurophysiol 4(28):36–8

    Article  Google Scholar 

  24. Nijsen T, Cluitmans P, Arends J, Griep P (2007) Detection of subtle nocturnal motor activity from 3-d accelerometry recordings in epilepsy patients. IEEE Trans Biomed Eng 54(11):2073–2081

    Article  Google Scholar 

  25. Cuppens K, Lagae L, Ceulemans B, Van Huffel S, Vanrumste B (2009) Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: a first study. In: Conference Proceedings IEEE Engineering Medicine and Biology Society 6608–11

    Google Scholar 

  26. Dalton A, Patel S, Chowdhury A, Welsh M, Pang T, Schachter S et al (2012) Development of a body sensor network to detect motor patterns of epileptic seizures. IEEE Trans Biomed Eng 59:3204–11

    Article  Google Scholar 

  27. Tan CH, Yap KS, Yap HJ (2012) Application of genetic algorithm for fuzzy rules optimization on semi expert judgment automation using pittsburg approach. Appl Soft Comput 12(8):2168–2177

    Article  Google Scholar 

  28. Tian J, Li M, Chen F (2010) Dual-population based coevolutionary algorithm for designing rbfnn with feature selection. Expert Syst Appl 37(10):6904–6918

    Article  Google Scholar 

  29. Fernández A, López V, del Jesus M, Herrera F (2015) Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges. Knowl-Based Syst (In Press, Accepted Manuscript, February 2015)

    Google Scholar 

  30. Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8:1–29

    Article  Google Scholar 

  31. Alvarez-Alvarez A, Triviño G, Cordón O (2012) Human gait modeling using a genetic fuzzy finite state machine. IEEE Trans Fuzzy Syst 20(2):205–223

    Article  Google Scholar 

  32. Peña Reyes CA, Sipper M (2001) Fuzzy coco: a cooperative-coevolutionary approach to fuzzy modeling. IEEE Trans Fuzzy Syst 9(5):727–737

    Google Scholar 

  33. Villar J, Gonzlez S, Sedano J, Chira C, Trejo-Gabriel-Galan J (2014) Improving human activity recognition and its application in early stroke diagnosis. Int J Neural Syst 10:1–20

    Google Scholar 

Download references

Acknowledgments

This research has been funded by the Spanish Ministry of Science and Innovation, under projects TIN2011-24302 and TIN2014-56967-R, Fundación Universidad de Oviedo project FUO-EM-340-13, Junta de Castilla y León projects BIO/BU09/14 and SACYL 2013 GRS/822/A/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. de la Cal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de la Cal, E.A., Villar, J.R., Vergara, P.M., Sedano, J., Herrero, A. (2015). A Preliminary Cooperative Genetic Fuzzy Proposal for Epilepsy Identification Using Wearable Devices. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol 368. Springer, Cham. https://doi.org/10.1007/978-3-319-19719-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19719-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19718-0

  • Online ISBN: 978-3-319-19719-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics