Abstract
Along with the widespread use of IT techniques, the requirements for CBIR (Content-Based Image Retrieval) is attractive for researchers from diverse areas. CBIR’s challenge is still how to ensure the meaningfulness of the retrieved images, for which the geometric consistency should be considered. And RANSAC and its variants are popular in the post-verification stage for that. This paper presents a Delaunay triangulation (DT) based method for that, some properties of which ensure its stability to capture the local structures. By converting the geometric verification into DT mapping, our method could not only catch invariant local structure points, but also is much more efficient (\(O(Nlog(N))\)). We evaluate our approach on common image benchmark and demonstrate its effectiveness for image geometric verification problem.
L.-B. Kong — This work was supported by the China Fundamental Research Funds for the Central Universities under Grant No.2011JBM320, and the National Natural Science Foundation of China (NSFC) under Grant No.61272353.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Attali, D., Boissonnat, J.-D., Lieutier, A.: Complexity of the delaunay triangulation of points on surfaces: the smooth case. In: 19th Annual Symposium on Computational Geometry, pp. 201–210 (2003)
Bhattacharya, P., Gavrilova, M.: DT-RANSAC: A Delaunay Triangulation Based Scheme for Improved RANSAC Feature Matching. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds.) Transactions on Computational Science XX. LNCS, vol. 8110, pp. 5–21. Springer, Heidelberg (2013)
Cao, Y., Wang, C., Li, Z., Zhang, L., Zhang, L.: Spatial bag-of-features. In: Proc. CVPR, pp. 3352–3359 (2012)
Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proc. BMVC, pp. 110–119 (2009)
Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)
Chum, O., Mikulík, A., Perdoch, M., Matas, J.: Total rrecall II: Query expansion revisited. In: Proc. CVPR, pp. 889–896 (2011)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)
Jégou, H., Zisserman, A.: Triangulation embedding and democratic aggregation for image search. In: Proc. CVPR, pp. 3310–3317 (2014)
Liu, Y., Zhang, D.S., Lu, G.J., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40, 262–282 (2007)
Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. CVPR, pp. 1–8 (2007)
Qin, D.F., Gammeter, S., Bossard, L., Quack, T., Van Gool, L.: Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In: Proc. CVPR, pp. 777–784 (2011)
Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)
Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions, and open issues. J. Visual Commun. Image Representation 10(4), 39–62 (1999)
Shen, X.H., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization with spatially-constrained similarity measure and k-nn re-ranking. In: Proc. CVPR, pp. 3013–3020 (2012)
Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proc. ICCV, pp. 1470–1477 (2003)
Tolias, G., Furon, T., Jégou, H.: Orientation covariant aggregation of local descriptors with embeddings. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 382–397. Springer, Heidelberg (2014)
Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008)
Zhang, Y.M., Jia, Z.Y., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: Proc. CVPR, pp. 809–816 (2011)
Zhao, X.Y., He, Z.X., Zhang, S.Y.: Improved keypoint descriptors based on delaunay triangulation for image matching. Optik 125, 3121–3123 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kong, LB., Kong, LH., Yang, T., Lu, W. (2015). A Fast and Effective Image Geometric Verification Method for Efficient CBIR. In: Sharaf, M., Cheema, M., Qi, J. (eds) Databases Theory and Applications. ADC 2015. Lecture Notes in Computer Science(), vol 9093. Springer, Cham. https://doi.org/10.1007/978-3-319-19548-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-19548-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19547-6
Online ISBN: 978-3-319-19548-3
eBook Packages: Computer ScienceComputer Science (R0)