[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Discovery of Differential Dependencies Through Association Rules Mining

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9093))

Included in the following conference series:

Abstract

Differential dependencies (DDs) extend functional dependencies (FDs) to capture the semantics of distance among data values. To mine DDs in a given relation is, thus, more challenging as the more general definition of DDs creates: a combinatorial large search space; and hugely sized minimal cover sets of DDs. This paper proposes a simple, yet effective and efficient approach to mine DDs in a given relation. We study and present a link between DDs and association rules (ARs): paving way for the adoption of existing ARs mining algorithms in the discovery of DDs. Furthermore, we propose a measure of interestingness for DDs to aid the discovery of essential DDs and avoid mining an extremely large set. Finally, we show the efficiency and scalability of our solution through experiments on three real-world benchmark data sets. The results indicate that our discovery approach is efficient and scalable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imieliski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. SIGMOD Rec. 22(2), 207–216 (1993)

    Article  Google Scholar 

  2. Borgelt, C., Kruse, R.: Induction of association rules: apriori implementation. In: 15th Conference on Computational Statistics, pp. 395–400 (2002)

    Google Scholar 

  3. Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based Approach to Semantic Query Optimization. ACM Trans. Database Syst. 15(2), 162–207 (1990)

    Article  Google Scholar 

  4. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23(5), 683–698 (2011)

    Article  Google Scholar 

  5. Fan, W., Jia, X., Li, J., Ma, S.: Reasoning about Record Matching Rules. PVLDB 2(1), 407–418 (2009)

    Google Scholar 

  6. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On Generating Near-optimal Tableaux for Conditional Functional Dependencies. Proc. VLDB Endow. 1(1), 376–390 (2008)

    Article  Google Scholar 

  7. Huhtala, Y., Krkkinen, J., Porkka, P., Toivonen, H.: Tane: An Efficient Algorithm for Discovering Functional and Approximate Dependencies. The Computer Journal 42(2), 100–111 (1999)

    Article  MATH  Google Scholar 

  8. Koudas, N., Saha, A., Srivastava, D., Venkatasubramanian, S.: Metric functional dependencies. In: 25th International Conference on Data Engineering, pp. 1275–1278. IEEE Computer Society (2009)

    Google Scholar 

  9. Kwashie, S., Liu, J., Li, J., Ye, F.: Mining differential dependencies: a subspace clustering approach. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 50–61. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Li, J.: On optimal Rule Discovery. IEEE Trans. on Knowledge and Data Engineering 18(4), 460–471 (2006)

    Article  Google Scholar 

  11. Li, J., Liu, J., Toivonen, H., Yong, J.: Effective Pruning for the Discovery of Conditional Functional Dependencies. Computer Journal 56(3), 378–392 (2013)

    Article  MATH  Google Scholar 

  12. Liu, J., Ye, F., Li, J., Wang, J.: On Discovery of Functional Dependencies from Data. Data & Knowledge Engineering 86, 146–159 (2013)

    Article  Google Scholar 

  13. Novelli, N., Cicchetti, R.: FUN: an efficient algorithm for mining functional and embedded dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Song, S., Chen, L.: Discovering matching dependencies. In: 18th ACM Conference on Information and Knowledge Management, pp. 1421–1424 (2009)

    Google Scholar 

  15. Song, S., Chen, L.: Differential Dependencies: Reasoning and Discovery. ACM Trans. Database Syst. 36(3), 16:1–16:41 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selasi Kwashie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kwashie, S., Liu, J., Li, J., Ye, F. (2015). Efficient Discovery of Differential Dependencies Through Association Rules Mining. In: Sharaf, M., Cheema, M., Qi, J. (eds) Databases Theory and Applications. ADC 2015. Lecture Notes in Computer Science(), vol 9093. Springer, Cham. https://doi.org/10.1007/978-3-319-19548-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19548-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19547-6

  • Online ISBN: 978-3-319-19548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics