[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Domain Generalization Based on Transfer Component Analysis

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

Abstract

This paper investigates domain generalization: How to use knowledge acquired from related domains and apply it to new domains? Transfer Component Analysis (TCA) learns a shared subspace by minimizing the dissimilarities across domains, while maximally preserving the data variance. We propose Multi-TCA, an extension of TCA to multiple domains as well as Multi-SSTCA, which is an extension of TCA for semi-supervised learning. In addition to the original application of TCA for domain adaptation problems, we show that Multi-TCA can also be applied for domain generalization. Multi-TCA and Multi-SSTCA are evaluated on two publicly available datasets with the tasks of landmine detection and Parkinson telemonitoring. Experimental results demonstrate that Multi-TCA can improve predictive performance on previously unseen domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift. J. Mach. Learn. Res. 10, 2137–2155 (2009)

    MATH  MathSciNet  Google Scholar 

  3. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: NIPS, pp. 2178–2186 (2011)

    Google Scholar 

  4. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML, pp. 222–230 (2013)

    Google Scholar 

  5. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method for the two-sample-problem. In: NIPS, pp. 513–520 (2006)

    Google Scholar 

  6. Gretton, A., Bousquet, O., Smola, A.J., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.: Using deep belief nets to learn covariance kernels for gaussian processes. In: NIPS, pp. 1249–1256 (2007)

    Google Scholar 

  8. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting sample selection bias by unlabeled data. In: NIPS, pp. 601–608 (2006)

    Google Scholar 

  9. Little, M., McSharry, P., Roberts, S., Costello, D., Moroz, I.: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine 6:23(1) (2007)

    Google Scholar 

  10. Long, M., Pan, S.J., St Yu, P., Wang, J., Ding, G.: Adaptation regularization: A general framework for transfer learning. IEEE Trans. on Know. and Data Eng. 26(5), 1076–1089 (2014)

    Article  Google Scholar 

  11. Long, M., Wang, J., Ding, G., Shen, D., Yang, Q.: Transfer learning with graph co-regularization. In: Proc. of the 26th Conf. on Art. Int., pp. 1805–1818. AAAI (2012)

    Google Scholar 

  12. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: Proc. of the 30th Int. Conf. on Mach. Learn., pp. 10–18 (2013)

    Google Scholar 

  13. Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  14. Pan, S.J., Tsang, I., Kwok, J., Yang, Q.: Domain adaptation via transfer component analysis. Trans. on Neural Networks 22(2), 199–210 (2011)

    Article  Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. on Know. and Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  16. Pan, S.J., Zheng, V.W., Yang, Q., Hu, D.H.: Transfer learning for wifi-based indoor localization. In Proc. of the Workshop on Trans. Learn. for Complex Tasks, of the 23rd AAAI Conf. on Art. Int., pp. 43–48 (2008)

    Google Scholar 

  17. Persello, C., Bruzzone, L.: Relevant and invariant feature selection of hyperspectral images for domain generalization. In: Int. Geoscience and Remote Sensing Symposium (IGARSS), pp. 3562–3565. IEEE (2014)

    Google Scholar 

  18. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press (2009)

    Google Scholar 

  19. Schölkopf, B., Smola, A., Müller, K.: Kernel principal component analysis (1999)

    Google Scholar 

  20. Varnek, A., Gaudin, C., Marcou, G., Baskin, I., Pandey, A.K., Tetko, I.V.: Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. J. of Chem. Inf. and Modeling 49(1), 133–144 (2009)

    Article  Google Scholar 

  21. Wang, C., Mahadevan, S.: Heterogeneous domain adaptation using manifold alignment. In: Proc. of The Twenty-Second Int. Joint Conf. on Art. Int., vol. 2, pp. 1541–1546. AAAI (2011)

    Google Scholar 

  22. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multitask learning for classication with Dirichlet process priors. J. Mach. Learn. Res. 35(8), 35–63 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grubinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grubinger, T., Birlutiu, A., Schöner, H., Natschläger, T., Heskes, T. (2015). Domain Generalization Based on Transfer Component Analysis. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics