Abstract
This article presents \(MO-Mine_{clust}\) a first package of the platform in development \(MO-Mine\). This platform aims at providing optimization algorithms, and in particular multi-objective approaches, to deal with classical datamining tasks (Classification, association rules...). This package \(MO-Mine_{clust}\) is dedicated to clustering. Indeed, it is well-known that clustering may be seen as a multi-objective optimization problem as the goal is both to minimize distances between data belonging to a same cluster, while maximizing distances between data belonging to different clusters. In this paper we present the framework as well as experimental results, to attest the benefit of using multi-objective approaches for clustering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm for clustering gene expression data. Bioinformatics 23(21), 2859–2865 (2007)
Corne, D., Jerram, N.R., Knowles, J., Oates, M.J.: Pesa-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 283–290. Morgan Kaufmann Publishers (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). Cited by(since 1996)7480
Piquer, Á.G.: Facing-up challenges of multiobjective clustering based on evolutionary algorithms: representations, scalability and retrieval solutions. Ph.D. thesis, Universitat Ramon Llull (2012)
Garcia-Piquer, A., Fornells, A., Bacardit, J., Orriols-Puig, A., Golobardes, E.: Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering, pp. 36–53 (2014)
Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Physica A Stat. Mech. Appl. 391(15), 4050–4060 (2012)
Handl, J., Knowles, J.: Clustering criteria in multiobjective data clustering. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 32–41. Springer, Heidelberg (2012)
Handl, J., Knowles, J.D.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)
Handl, J., Knowles, J.D.: Evolutionary multiobjective clustering. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1081–1091. Springer, Heidelberg (2004)
Liefooghe, A., Jourdan, L., Talbi, E.-G.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: paradiseo-moeo. Eur. J. Oper. Res. 209(2), 104–112 (2011)
López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The Irace package: iterated racing for automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, January 2011
Maulik, U., Bandyopadhyay, S., Mukhopadhyay, A.: Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics. Springer, Berlin (2011). ISBN 978-3-642-16614-3
Mukhopadhyay, A., Maulik, U.: A multiobjective approach to MR brain image segmentation. Appl. Soft Comput. 11(1), 872–880 (2011)
Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. IEEE Trans. Evol. Comput. 13(5), 991–1005 (2009)
Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, A.: Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)
Saha, I., Maulik, U., Plewczynski, D.: A new multi-objective technique for differential fuzzy clustering: the impact of soft computing for the progress of artificial intelligence. Appl. Soft Comput. 11(2), 2765–2776 (2011)
Cao, H., Zheng, Y., Jia, L.: Multi-objective gene expression programming for clustering. Inf. Technol. Control 41(3), 283–294 (2012)
Zhu, L., Cao, L., Yang, J.: Multiobjective evolutionary algorithm-based soft subspace clustering. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Acknowledgements
This work has been realized with the support of the french project ANR-13-TECS-0009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Fisset, B., Dhaenens, C., Jourdan, L. (2015). \(MO-Mine_{clust}\): A Framework for Multi-objective Clustering. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-19084-6_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19083-9
Online ISBN: 978-3-319-19084-6
eBook Packages: Computer ScienceComputer Science (R0)