[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Factoring RSA Moduli with Weak Prime Factors

  • Conference paper
Codes, Cryptology, and Information Security (C2SI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9084))

Abstract

In this paper, we study the problem of factoring an RSA modulus N = pq in polynomial time, when p is a weak prime, that is, p can be expressed as ap = u 0 + M 1 u 1 + … + M k u k for some k integers M 1,…, M k and k + 2 suitably small parameters a, u 0,…u k . We further compute a lower bound for the set of weak moduli, that is, moduli made of at least one weak prime, in the interval [22n,22(n + 1)] and show that this number is much larger than the set of RSA prime factors satisfying Coppersmith’s conditions, effectively extending the likelihood for factoring RSA moduli. We also prolong our findings to moduli composed of two weak primes.

Partially supported by the French SIMPATIC (SIM and PAiring Theory for Information and Communications security).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ANSI Standard X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)

    Google Scholar 

  2. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange, T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 341–360. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46(2), 203–213 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Compaq Computer Corperation. Cryptography using Compaq multiprime technology in a parallel processing environment (2002), ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf

  6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, London (1975)

    Google Scholar 

  8. Håstad, J.: On Using RSA with Low Exponent in a Public Key Network. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 403–408. Springer, Heidelberg (1986)

    Google Scholar 

  9. Hastad, J.: Solving simultaneous modular equations of low degree. SIAM J. of Computing 17, 336–341 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 406–424. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Lenstra, H.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)

    Article  Google Scholar 

  14. Lu, Y., Zhang, R., Lin, D.: New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications, Cryptology ePrint Archive, Report 2014/343 (2014), https://eprint.iacr.org/2014/343

  15. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University of Paderborn (2003)

    Google Scholar 

  16. Nitaj, A.: Another generalization of wiener’s attack on RSA. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 174–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zimmermann, P.: 50 largest factors found by ECM, http://www.loria.fr/~zimmerma/records/top50.html

  19. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Algebra in Engineering, Communication and Computing 13(1), 17–28 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36, 553–558 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Nitaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nitaj, A., Rachidi, T. (2015). Factoring RSA Moduli with Weak Prime Factors. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science(), vol 9084. Springer, Cham. https://doi.org/10.1007/978-3-319-18681-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18681-8_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18680-1

  • Online ISBN: 978-3-319-18681-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics