Abstract
This paper presents a cryptanalysis of a modified version of the Sidelnikov cryptosystem which is based on Reed-Muller codes. This modified scheme consists in inserting random columns in the secret generating matrix or parity check matrix. The cryptanalysis relies on the computation of the squares of the public code. The particular nature of Reed-Muller which are defined by means of multivariate binary polynomials, permits to predicate the value of dimension of the square codes and then to fully recover in polynomial time the secret positions of the random columns. Our work shows that the insertion of random columns in the Sidelnikov scheme does not bring any security improvement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)
Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr. 35(1), 63–79 (2005)
Chizhov, I.V., Borodin, M.A.: The failure of McEliece PKC based on Reed-Muller codes. IACR Cryptology ePrint Archive, Report 2013/287 (2013), http://eprint.iacr.org/
Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)
Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014), http://dx.doi.org/10.1007/s10623-014-9967-z
Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. In: Proc. IEEE Inf. Theory Workshop, ITW 2011, Paraty, Brasil, pp. 282–286 (October 2011)
Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844 (2013)
Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural weakness of compact variants of the McEliece cryptosystem. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2014, Honolulu, HI, USA, pp. 1717–1721 (July 2014)
Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural cryptanalysis of McEliece schemes with compact keys. Des. Codes Cryptogr. (2015), to appear, see also IACR Cryptology ePrint Archive, Report2014/210
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)
Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), Bergen, Norway, pp. 81–91 (March 2005)
Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomorphic encryption scheme relying on Reed-Solomon codes. CoRR abs/1203.6686 (2012)
Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR abs/1204.6459 (2012)
Gueye, C.T., Mboup, E.H.M.: Secure cryptographic scheme based on modified Reed Muller codes. International Journal of Security and its Applications 7(3), 55–64 (2013)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 4th edn. North–Holland, Amsterdam (1986)
Márquez-Corbella, I., Pellikaan, R.: Error-correcting pairs for a public-key cryptosystem. preprint (2012) (preprint)
McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab (1978), dSN Progress Report 44
Minder, L., Shokrollahi, M.A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg (2007)
Misoczki, R., Barreto, P.: Compact McEliece keys from Goppa codes. In: Selected Areas in Cryptography, Calgary, Canada (August 13-14, 2009)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)
Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Ph.D. thesis, Université Paris 6, France (2002)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Sidelnikov, V.M.: A public-key cryptosytem based on Reed-Muller codes. Discrete Mathematics and Applications 4(3), 191–207 (1994)
Sidelnikov, V.M., Shestakov, S.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444 (1992)
Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2006, pp. 1733–1737 (2006)
Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. IACR Cryptology ePrint Archive, Report 2009/452 (2009), http://eprint.iacr.org/2009/452.pdf
Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: Post-Quantum Cryptography 2010, pp. 61–72 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Otmani, A., Kalachi, H.T. (2015). Square Code Attack on a Modified Sidelnikov Cryptosystem. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science(), vol 9084. Springer, Cham. https://doi.org/10.1007/978-3-319-18681-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-18681-8_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18680-1
Online ISBN: 978-3-319-18681-8
eBook Packages: Computer ScienceComputer Science (R0)