[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Square Code Attack on a Modified Sidelnikov Cryptosystem

  • Conference paper
Codes, Cryptology, and Information Security (C2SI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9084))

Abstract

This paper presents a cryptanalysis of a modified version of the Sidelnikov cryptosystem which is based on Reed-Muller codes. This modified scheme consists in inserting random columns in the secret generating matrix or parity check matrix. The cryptanalysis relies on the computation of the squares of the public code. The particular nature of Reed-Muller which are defined by means of multivariate binary polynomials, permits to predicate the value of dimension of the square codes and then to fully recover in polynomial time the secret positions of the random columns. Our work shows that the insertion of random columns in the Sidelnikov scheme does not bring any security improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr. 35(1), 63–79 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chizhov, I.V., Borodin, M.A.: The failure of McEliece PKC based on Reed-Muller codes. IACR Cryptology ePrint Archive, Report 2013/287 (2013), http://eprint.iacr.org/

  4. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014), http://dx.doi.org/10.1007/s10623-014-9967-z

    Article  MATH  MathSciNet  Google Scholar 

  6. Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. In: Proc. IEEE Inf. Theory Workshop, ITW 2011, Paraty, Brasil, pp. 282–286 (October 2011)

    Google Scholar 

  7. Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844 (2013)

    Article  Google Scholar 

  8. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural weakness of compact variants of the McEliece cryptosystem. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2014, Honolulu, HI, USA, pp. 1717–1721 (July 2014)

    Google Scholar 

  9. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural cryptanalysis of McEliece schemes with compact keys. Des. Codes Cryptogr. (2015), to appear, see also IACR Cryptology ePrint Archive, Report2014/210

    Google Scholar 

  10. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), Bergen, Norway, pp. 81–91 (March 2005)

    Google Scholar 

  12. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomorphic encryption scheme relying on Reed-Solomon codes. CoRR abs/1203.6686 (2012)

    Google Scholar 

  13. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR abs/1204.6459 (2012)

    Google Scholar 

  14. Gueye, C.T., Mboup, E.H.M.: Secure cryptographic scheme based on modified Reed Muller codes. International Journal of Security and its Applications 7(3), 55–64 (2013)

    Google Scholar 

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 4th edn. North–Holland, Amsterdam (1986)

    Google Scholar 

  16. Márquez-Corbella, I., Pellikaan, R.: Error-correcting pairs for a public-key cryptosystem. preprint (2012) (preprint)

    Google Scholar 

  17. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab (1978), dSN Progress Report 44

    Google Scholar 

  18. Minder, L., Shokrollahi, M.A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Misoczki, R., Barreto, P.: Compact McEliece keys from Goppa codes. In: Selected Areas in Cryptography, Calgary, Canada (August 13-14, 2009)

    Google Scholar 

  20. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)

    MATH  MathSciNet  Google Scholar 

  21. Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Ph.D. thesis, Université Paris 6, France (2002)

    Google Scholar 

  22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sidelnikov, V.M.: A public-key cryptosytem based on Reed-Muller codes. Discrete Mathematics and Applications 4(3), 191–207 (1994)

    Article  MathSciNet  Google Scholar 

  24. Sidelnikov, V.M., Shestakov, S.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444 (1992)

    MathSciNet  Google Scholar 

  25. Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2006, pp. 1733–1737 (2006)

    Google Scholar 

  26. Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. IACR Cryptology ePrint Archive, Report 2009/452 (2009), http://eprint.iacr.org/2009/452.pdf

  27. Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: Post-Quantum Cryptography 2010, pp. 61–72 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Otmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Otmani, A., Kalachi, H.T. (2015). Square Code Attack on a Modified Sidelnikov Cryptosystem. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science(), vol 9084. Springer, Cham. https://doi.org/10.1007/978-3-319-18681-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18681-8_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18680-1

  • Online ISBN: 978-3-319-18681-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics