[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Boosting-Based Visual Tracking Using Structural Local Sparse Descriptors

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

  • 1660 Accesses

Abstract

This paper develops an online algorithm based on sparse representation and boosting for robust object tracking. Local descriptors of a target object are represented by pooling some sparse codes of its local patches, and an Adaboost classifier is learned using the local descriptors to discriminate target from background. Meanwhile, the proposed algorithm assigns a weight value, calculated with the generative model, to each candidate object to adjust the classification result. In addition, a template update strategy, based on incremental principal component analysis and occlusion handing scheme, is presented to capture the appearance change of the target and to alleviate the visual drift problem. Comparison with the state-of-the-art trackers on the comprehensive benchmark shows effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 1–45 (2006)

    Article  Google Scholar 

  2. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 271–288 (2013)

    Google Scholar 

  3. Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418 (2013)

    Google Scholar 

  4. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)

    Article  Google Scholar 

  5. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: ICCV, pp. 1–8 (2009)

    Google Scholar 

  6. Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp. 1822–1829 (2012)

    Google Scholar 

  7. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR, pp. 2042–2049 (2012)

    Google Scholar 

  8. Wang, N., Wang, J., Yeung, D.: Online robust non-negative dictionary learning for visual tracking. In: ICCV, pp. 657–664 (2013)

    Google Scholar 

  9. Wang, D., Lu, H., Yang, M.:Least soft-threshold squares tracking. In: CVPR, pp. 2371–2378 (2013)

    Google Scholar 

  10. Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33, 1619–1632 (2011)

    Article  Google Scholar 

  11. Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)

    Google Scholar 

  12. Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)

    Google Scholar 

  13. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Yao, R., Shi, Q., Shen, C., Zhang, Y., Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR, pp. 2363–2370 (2013)

    Google Scholar 

  15. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparsity-based collaborative model. In: CVPR, pp. 1838–1845 (2012)

    Google Scholar 

  16. Dinh, T.B., Medioni, G.G.: Co-training framework of generative and discriminative trackers with partial occlusion handling. In: WACV, pp. 642–649 (2011)

    Google Scholar 

  17. Liu, R., Cheng, J., Lu, H.: A robust boosting tracker with minimum error bound in a co-training framework. In: ICCV, pp. 1459–1466 (2009)

    Google Scholar 

  18. Wang, Q., Chen, F., Xu, W., Yang, M.: Online discriminative object tracking with local sparse representation. In: WACV, pp. 425–432 (2012)

    Google Scholar 

  19. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)

    Google Scholar 

  20. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: CVPR, pp. 1177–1184 (2011)

    Google Scholar 

  21. Kwon, J., Lee, K.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)

    Google Scholar 

  22. Kwon, J., Lee, K.: Tracking by sampling trackers. In: ICCV, pp. 1195–1202 (2011)

    Google Scholar 

  23. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Sevilla-Lara, L., Learned-Miller, E.G.: Distribution fields for tracking. In: CVPR, pp. 1910–1917 (2012)

    Google Scholar 

  25. Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: CVPR, pp. 1940–1947 (2012)

    Google Scholar 

  26. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China (No. 61472036) and the Major State Basic Research Development Program of China (No. 2012CB720003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, Y., Ma, B., Hu, H., Han, Y. (2015). Boosting-Based Visual Tracking Using Structural Local Sparse Descriptors. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics