Abstract
This paper develops an online algorithm based on sparse representation and boosting for robust object tracking. Local descriptors of a target object are represented by pooling some sparse codes of its local patches, and an Adaboost classifier is learned using the local descriptors to discriminate target from background. Meanwhile, the proposed algorithm assigns a weight value, calculated with the generative model, to each candidate object to adjust the classification result. In addition, a template update strategy, based on incremental principal component analysis and occlusion handing scheme, is presented to capture the appearance change of the target and to alleviate the visual drift problem. Comparison with the state-of-the-art trackers on the comprehensive benchmark shows effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 1–45 (2006)
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 271–288 (2013)
Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418 (2013)
Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)
Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: ICCV, pp. 1–8 (2009)
Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp. 1822–1829 (2012)
Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR, pp. 2042–2049 (2012)
Wang, N., Wang, J., Yeung, D.: Online robust non-negative dictionary learning for visual tracking. In: ICCV, pp. 657–664 (2013)
Wang, D., Lu, H., Yang, M.:Least soft-threshold squares tracking. In: CVPR, pp. 2371–2378 (2013)
Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33, 1619–1632 (2011)
Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Yao, R., Shi, Q., Shen, C., Zhang, Y., Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR, pp. 2363–2370 (2013)
Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparsity-based collaborative model. In: CVPR, pp. 1838–1845 (2012)
Dinh, T.B., Medioni, G.G.: Co-training framework of generative and discriminative trackers with partial occlusion handling. In: WACV, pp. 642–649 (2011)
Liu, R., Cheng, J., Lu, H.: A robust boosting tracker with minimum error bound in a co-training framework. In: ICCV, pp. 1459–1466 (2009)
Wang, Q., Chen, F., Xu, W., Yang, M.: Online discriminative object tracking with local sparse representation. In: WACV, pp. 425–432 (2012)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)
Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: CVPR, pp. 1177–1184 (2011)
Kwon, J., Lee, K.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)
Kwon, J., Lee, K.: Tracking by sampling trackers. In: ICCV, pp. 1195–1202 (2011)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012)
Sevilla-Lara, L., Learned-Miller, E.G.: Distribution fields for tracking. In: CVPR, pp. 1910–1917 (2012)
Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: CVPR, pp. 1940–1947 (2012)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)
Acknowledgement
This work is supported in part by the National Natural Science Foundation of China (No. 61472036) and the Major State Basic Research Development Program of China (No. 2012CB720003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, Y., Ma, B., Hu, H., Han, Y. (2015). Boosting-Based Visual Tracking Using Structural Local Sparse Descriptors. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-16814-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16813-5
Online ISBN: 978-3-319-16814-2
eBook Packages: Computer ScienceComputer Science (R0)