[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MTS: A Multiple Temporal Scale Tracker Handling Occlusion and Abrupt Motion Variation

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

  • 1677 Accesses

Abstract

We propose visual tracking over multiple temporal scales to handle occlusion and non-constant target motion. This is achieved by learning motion models from the target history at different temporal scales and applying those over multiple temporal scales in the future. These motion models are learned online in a computationally inexpensive manner. Reliable recovery of tracking after occlusions is achieved by extending the bootstrap particle filter to propagate particles at multiple temporal scales, possibly many frames ahead, guided by these motion models. In terms of the Bayesian tracking, the prior distribution at the current time-step is approximated by a mixture of the most probable modes of several previous posteriors propagated using their respective motion models. This improved and rich prior distribution, formed by the models learned and applied over multiple temporal scales, further makes the proposed method robust to complex target motion through covering relatively large search space with reduced sampling effort. Extensive experiments have been carried out on both publicly available benchmarks and new video sequences. Results reveal that the proposed method successfully handles occlusions and a variety of rapid changes in target motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To demonstrate the basic idea of the proposed approach and for the sake of simplicity, x, y, and s part of the target state are considered uncorrelated. They may be correlated, and taking this into account while learning might produce improved models. We would pursue this avenue in future work.

  2. 2.

    We investigate the power of using multiple temporal scales of motion model generation and application to deal with visual tracking problems related to occlusion and abrupt motion variation. To evaluate this hypothesis independently of the appearance model, a simple appearance model is used on purpose.

  3. 3.

    MTS-TS is identical to MTS-L except that the propagation of particles takes place through a different model instead of the model proposed in Eq. 7 and the variance of the best state (estimated through particles) is reduced by combining it with the highest likelihood motion prediction. See the supplementary material for the details of this application.

  4. 4.

    PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/.

  5. 5.

    We downsampled original car sequence by a factor of 3 to have partially low frame rate.

  6. 6.

    PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/.

  7. 7.

    We admit that a more complex system complete with more advanced appearance models would obtain a higher overall tracking accuracy, but we believe that for the sake of scientific evidence finding employing such a system would obfuscate attribution of our experimental results to the original hypothesis.

References

  1. Yin, Z., Collins, R.T.: Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  2. Lerdsudwichai, C., Abdel-Mottaleb, M., Ansari, A.: Tracking multiple people with recovery from partial and total occlusion. Pattern Recogn. 38, 1059–1070 (2005)

    Article  Google Scholar 

  3. Kwak, S., Nam, W., Han, B., Han, J.H.: Learning occlusion with likelihoods for visual tracking. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1551–1558. IEEE (2011)

    Google Scholar 

  4. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77, 125–141 (2008)

    Article  Google Scholar 

  5. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1269–1276. IEEE (2010)

    Google Scholar 

  6. Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: multitarget detection and tracking. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Naeem, A., Pridmore, T.P., Mills, S.: Managing particle spread via hybrid particle filter/kernel mean shift tracking. In: BMVC, pp. 1–10 (2007)

    Google Scholar 

  8. Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1195–1202. IEEE (2011)

    Google Scholar 

  9. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 798–805. IEEE (2006)

    Google Scholar 

  10. Han, B., Davis, L.S.: Probabilistic fusion-based parameter estimation for visual tracking. Comput. Vis. Image Underst. 113, 435–445 (2009)

    Article  Google Scholar 

  11. Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient l1 tracker with occlusion detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1257–1264. IEEE (2011)

    Google Scholar 

  12. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837. IEEE (2012)

    Google Scholar 

  13. Lim, H., Camps, O.I., Sznaier, M., Morariu, V.I.: Dynamic appearance modeling for human tracking. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 751–757. IEEE (2006)

    Google Scholar 

  14. Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S.: Distributed occlusion reasoning for tracking with nonparametric belief propagation. In: Advances in Neural Information Processing Systems, pp. 1369–1376 (2004)

    Google Scholar 

  15. Dockstader, S.L., Tekalp, A.M.: Multiple camera tracking of interacting and occluded human motion. Proc. IEEE 89, 1441–1455 (2001)

    Article  Google Scholar 

  16. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30, 267–282 (2008)

    Article  Google Scholar 

  17. Grabner, H., Matas, J., Van Gool, L., Cattin, P.: Tracking the invisible: Learning where the object might be. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1285–1292. IEEE (2010)

    Google Scholar 

  18. Yang, M., Wu, Y., Hua, G.: Context-aware visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1195–1209 (2009)

    Article  Google Scholar 

  19. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184. IEEE (2011)

    Google Scholar 

  20. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409–1422 (2012)

    Article  Google Scholar 

  21. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Perez, P., Vermaak, J., Blake, A.: Data fusion for visual tracking with particles. Proc. IEEE 92, 495–513 (2004)

    Article  Google Scholar 

  23. Shan, C., Tan, T., Wei, Y.: Real-time hand tracking using a mean shift embedded particle filter. Pattern Recogn. 40, 1958–1970 (2007)

    Article  MATH  Google Scholar 

  24. Pernkopf, F.: Tracking of multiple targets using online learning for reference model adaptation. IEEE Trans. Syst. Man Cybern., B 38, 1465–1475 (2008)

    Article  Google Scholar 

  25. Kristan, M., Kovačič, S., Leonardis, A., Perš, J.: A two-stage dynamic model for visual tracking. IEEE Trans. Syst. Man Cybern. B 40, 1505–1520 (2010)

    Article  Google Scholar 

  26. Isard, M., Blake, A.: A mixed-state condensation tracker with automatic model-switching. In: Sixth International Conference on Computer Vision, pp. 107–112. IEEE (1998)

    Google Scholar 

  27. Madrigal, F., Rivera, M., Hayet, J.-B.: Learning and regularizing motion models for enhancing particle filter-based target tracking. In: Ho, Y.-S. (ed.) PSIVT 2011, Part II. LNCS, vol. 7088, pp. 287–298. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Pavlovic, V., Rehg, J.M., MacCormick, J.: Learning switching linear models of human motion. In: NIPS, Citeseer, pp. 981–987 (2000)

    Google Scholar 

  29. Cifuentes, C.G., Sturzel, M., Jurie, F., Brostow, G.J., et al.: Motion models that only work sometimes. In: British Machive Vision Conference (2012)

    Google Scholar 

  30. Kwon, J., Lee, K.M.: Tracking of abrupt motion using wang-landau monte carlo estimation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 387–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior estimation. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2296–2303. IEEE (2013)

    Google Scholar 

  32. Zhou, X., Lu, Y., Lu, J., Zhou, J.: Abrupt motion tracking via intensively adaptive markov-chain monte carlo sampling. IEEE Trans. Image Process. 21, 789–801 (2012)

    Article  MathSciNet  Google Scholar 

  33. Mikami, D., Otsuka, K., Yamato, J.: Memory-based particle filter for face pose tracking robust under complex dynamics. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 999–1006. IEEE (2009)

    Google Scholar 

  34. Li, Y., Ai, H., Lao, S., et al.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  35. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal. Proc. 50, 174–188 (2002)

    Article  Google Scholar 

  36. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  37. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1838–1845. IEEE (2012)

    Google Scholar 

  38. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. IEEE (2012)

    Google Scholar 

  39. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418. IEEE (2013)

    Google Scholar 

  40. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  41. Dihl, L., Jung, C.R., Bins, J.: Robust adaptive patch-based object tracking using weighted vector median filters. In: 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images (Sibgrapi), pp. 149–156. IEEE (2011)

    Google Scholar 

  42. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: Prost: Parallel robust online simple tracking. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 723–730. IEEE (2010)

    Google Scholar 

  43. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 983–990. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haris Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khan, M.H., Valstar, M.F., Pridmore, T.P. (2015). MTS: A Multiple Temporal Scale Tracker Handling Occlusion and Abrupt Motion Variation. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics