Abstract
Supervised learning algorithms have been widely applied in tracking-by-detection based methods for object tracking in recent years. Most of these approaches treat tracking as a classification problem and solve it by training a discriminative classifier and exhaustively evaluating every possible target position; problems thus exist for two reasons. First, since the classifier describes the common feature of samples in an implicit way, it is not clear how well the classifier can represent the feature of the desired object against others; second, the brute-force search within the output space is usually time consuming, and thus limits the competence for real-time application. In this paper, we treat object tracking as a problem of similarity matching for streaming data. We propose to apply unsupervised learning by Locality Sensitive Hashing (LSH) and use LSH based similarity matching as the main engine for target detection. In addition, our method applies a Support Vector Machine (SVM) based supervised classifier cooperating with the unsupervised detector. Both the proposed tracker and several selected trackers are tested on some well accepted challenging videos; and the experimental results demonstrate that the proposed tracker outperforms the selected other trackers in terms of the effectiveness as well as the robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1064–1072 (2004)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via online boosting. In: BMVC, pp. 47–56 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Stalder, S., Grabner, H., Gool., L.V.: Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1409–1416 (2009)
Babenko, B., Yang, M.H., Belongie., S.: Visual tracking with online multiple instance learning. In: Computer Vision and Pattern Recognition 2009, pp. 983–990 (2009)
Hare, S., Saffari, A., Torr., P.H.: Struck: structured output tracking with kernels. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270 (2011)
Bordes, A., Bottou, L., Gallinari, P., Weston., J.: Solving multiclass support vector machines with larank. In: Proceedings of the 24th International Conference on Machine Learning, pp. 89–96 (2007)
Bordes, A., Usunier, N., Bottou, L.: Sequence labelling SVMs trained in one pass. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 146–161. Springer, Heidelberg (2008)
Crammer, K., Kandola, J.S., Singer., Y.: Online classification on a budget. In: Neural Information Processing Systems (NIPS), vol. 2, 5 (2003)
Wang, Z., Crammer, K., Vucetic., S.: Multi-class pegasos on a budget. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), vol. 2, pp. 1143–1150 (2010)
Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Robust tracking with weighted online structured learning. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 158–172. Springer, Heidelberg (2012)
Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel., A.: Part-based visual tracking with online latent structural learning. In: Computer Vision and Pattern Recognition (CVPR) 2013, pp. 2363–2370 (2013)
Li, X., Shen, C., Dick, A., van den Hengel., A.: Learning compact binary codes for visual tracking. In: Computer Vision and Pattern Recognition (CVPR) 2013, pp. 2419–2426 (2013)
Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof., H.: On-line random forests. In: Computer Vision Workshops (ICCV Workshops) 2009, pp. 1393–1400 (2009)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 864–877 (2012)
Schlkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt., J.C.: Support vector method for novelty detection. In: Neural Information Processing Systems(NIPS), vol. 12, pp. 582–588 (1999)
Gmez-Verdejo, V., Arenas-Garca, J., Lazaro-Gredilla, M., Navia-Vazquez, A.: Adaptive one-class support vector machine. IEEE Trans. Signal Process. 59, 2975–2981 (2011)
Indyk, P., Motwani., R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613 (1998)
Datar, M., Immorlica, N., Indyk, P., Mirrokni., V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 253–262 (2004)
Weiss, Y., Torralba, A., Fergus., R.: Spectral hashing. In: Neural Information Processing Systems (NIPS), vol. 9, 6 (2008)
Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li., K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd International Conference on Very large Data Bases, pp. 950–961 (2007)
Kulis, B., Grauman., K.: Kernelized locality-sensitive hashing for scalable image search. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2130–2137 (2009)
Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon., S.E.: Spherical hashing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2957–2964 (2012)
Zhang, T., Ghanem, B., Liu, S., Ahuja., N.: Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2042–2049 (2012)
Adam, A., Rivlin, E., Shimshoni., I.: Robust fragments-based tracking using the integral histogram. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.798–805 (2006)
Sevilla-Lara, L., Learned-Miller., E.: Distribution fields for tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1910–1917 (2012)
Bao, C., Wu, Y., Ling, H., Ji., H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1830–1837 (2012)
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision (IJCV) 77, 125–141 (2012)
Jia, X., Lu, H., Yang., M.H.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829 (2012)
Wu, Y., Lim, J., Yang., M.H.: Online object tracking: A benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418 (2013)
He, S., Yang, Q., Lau, R.W., Wang, J., Yang., M.H.: Visual tracking via locality sensitive histograms. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2427–2434 (2013)
Kwon, J., Lee., K.M.: Visual tracking decomposition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1269–1276 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, J., Sheng, J., Teredesai, A. (2015). Visual Tracking via Supervised Similarity Matching. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-16814-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16813-5
Online ISBN: 978-3-319-16814-2
eBook Packages: Computer ScienceComputer Science (R0)