Abstract
3D mesh data acquisition is often afflicted by undesirable measurement noise. Such noise has an aversive impact to further processing and also to human perception, and hence plays a pivotal role in mesh processing. We present here a fast saliency-based algorithm that can reduce the noise while preserving the finer details of the original object. In order to capture the object features at multiple scales, our mesh denoising algorithm estimates the mesh saliency from Gaussian weighted curvatures for vertices at fine and coarse scales. The proposed algorithm finds wide application in digitization of archaeological artifacts, such as statues and sculptures, where it is of paramount importance to capture the 3D surface with all its details as accurately as possible. We have tested the algorithm on several datasets, and the results exhibit its speed and efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24, 659–666 (2005)
Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4, 709–712 (1988)
Vollmer, J., Mencl, R., Muller, H.: Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18, 131–138 (1999)
Badri, H., El Hassouni, M., Aboutajdine, D.: Kernel-based laplacian smoothing method for 3D mesh denoising. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) ICISP 2012. LNCS, vol. 7340, pp. 77–84. Springer, Heidelberg (2012)
Desbrun, M., Meyer, M., Schrder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In: Graphics Interface, pp. 145–152 (2000)
Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. In: Proceedings of the Conference on Visualization 2002, VIS 2002, Washington, DC, pp. 125–132. IEEE Computer Society (2002)
Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum. 23, 391–400 (2004)
G.Taubin: Linear anisotropic mesh filtering. IBM Research Report RC22213(W0110–051) (2001)
Yagou, H., Ohtake, Y., Belyaev, A.: Mesh smoothing via mean and median filtering applied to face normals. In: Proceedings of Geometric Modeling and Processing, pp. 124–131 (2002)
Chen, K.: Adaptive smoothing via contextual and local discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1552–1567 (2005)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998)
Fleishman, S., Drori, I., Cohen-or, D.: Bilateral mesh denosing. ACM Trans. Graph. 22, 950–953 (2003)
Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature preserving mesh smoothing. ACM Trans. Graph. 22, 943–949 (2003)
Yagou, H., Ohtake, Y., Belyaev, A.: Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. In: Proceedings of Computer Graphics International, pp. 28–33 (2003)
Sun, X., Rosin, P., Martin, R., Langbein, F.: Fast and effective feature-preserving mesh denoising. IEEE Trans. Visual. Comput. Graph. 13, 925–938 (2007)
Zheng, Y., Fu, H., Au, O.K.-C., Tai, C.-L.: Bilateral normal filtering for mesh denoising. IEEE Trans. Visual. Comput. Graph. 17(10), 1521–1530 (2011)
Miropolsky, A., Fischer, A.: Reconstruction with 3d geometric bilateral filter. In: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, SM 2004, Aire-la-Ville, Switzerland, pp. 225–229. Eurographics Association (2004)
Deschaud, J.E., Goulette., F.: Point cloud non local denoising using local surface descriptor similarity. ISPRS Technical Commission III Symposium, PCV 2010 - Photogrammetric Computer Vision and Image Analysis XXXVIII - Part 3A (2010)
He, L., Schaefer, S.: Mesh denoising via l0 minimization. ACM Trans. Graph. 32, 64:1–64:8 (2013)
Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. In: Vaina, L. (ed.) Matters of Intelligence. Synthese Library, pp. 115–141. Springer, Heidelberg (1987)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)
Yee, H., Pattanaik, S., Greenberg, D.P.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20, 39–65 (2001)
Guy, G., Medioni, G.: Inferring global perpetual contours from local features. Int. J. Comput. Vis. 20, 113–133 (1996)
Guy, G., Medioni, G.: Inference of surfaces, 3d curves, and junctions from sparse, noisy, 3d data. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1265–1277 (1997)
Kim, Y., Varshney, A., Jacobs, D.W., Guimbretière, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7, 12:1–12:13 (2010)
Wu, J., Shen, X., Zhu, W., Liu, L.: Mesh saliency with global rarity. Graph. Models 75, 255–264 (2013)
Mao, Z.H., Ma, L.Z., Zhao, M.X., Li, Z.: Feature-preserving mesh denoising based on contextual discontinuities. J. Zhejiang Univ. Sci. A 7(9), 1603–1608 (2006)
Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of Fifth International Conference on Computer Vision, pp. 902–907 (1995)
Rusu, R., Cousins, S.: 3d is here: Point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)
Epfl, computer graphics and geometry laboratory. http://lgg.epfl.ch/statues.php?p=dataset/
Aim@shape repository. http://shapes.aim-at-shape.net/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dutta, S., Banerjee, S., Biswas, P.K., Bhowmick, P. (2015). Mesh Denoising Using Multi-scale Curvature-Based Saliency. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-16631-5_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16630-8
Online ISBN: 978-3-319-16631-5
eBook Packages: Computer ScienceComputer Science (R0)