[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mesh Denoising Using Multi-scale Curvature-Based Saliency

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Included in the following conference series:

Abstract

3D mesh data acquisition is often afflicted by undesirable measurement noise. Such noise has an aversive impact to further processing and also to human perception, and hence plays a pivotal role in mesh processing. We present here a fast saliency-based algorithm that can reduce the noise while preserving the finer details of the original object. In order to capture the object features at multiple scales, our mesh denoising algorithm estimates the mesh saliency from Gaussian weighted curvatures for vertices at fine and coarse scales. The proposed algorithm finds wide application in digitization of archaeological artifacts, such as statues and sculptures, where it is of paramount importance to capture the 3D surface with all its details as accurately as possible. We have tested the algorithm on several datasets, and the results exhibit its speed and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24, 659–666 (2005)

    Article  Google Scholar 

  2. Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4, 709–712 (1988)

    Article  MATH  Google Scholar 

  3. Vollmer, J., Mencl, R., Muller, H.: Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18, 131–138 (1999)

    Article  Google Scholar 

  4. Badri, H., El Hassouni, M., Aboutajdine, D.: Kernel-based laplacian smoothing method for 3D mesh denoising. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) ICISP 2012. LNCS, vol. 7340, pp. 77–84. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Desbrun, M., Meyer, M., Schrder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In: Graphics Interface, pp. 145–152 (2000)

    Google Scholar 

  6. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. In: Proceedings of the Conference on Visualization 2002, VIS 2002, Washington, DC, pp. 125–132. IEEE Computer Society (2002)

    Google Scholar 

  7. Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum. 23, 391–400 (2004)

    Article  Google Scholar 

  8. G.Taubin: Linear anisotropic mesh filtering. IBM Research Report RC22213(W0110–051) (2001)

    Google Scholar 

  9. Yagou, H., Ohtake, Y., Belyaev, A.: Mesh smoothing via mean and median filtering applied to face normals. In: Proceedings of Geometric Modeling and Processing, pp. 124–131 (2002)

    Google Scholar 

  10. Chen, K.: Adaptive smoothing via contextual and local discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1552–1567 (2005)

    Article  Google Scholar 

  11. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  12. Fleishman, S., Drori, I., Cohen-or, D.: Bilateral mesh denosing. ACM Trans. Graph. 22, 950–953 (2003)

    Article  Google Scholar 

  13. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature preserving mesh smoothing. ACM Trans. Graph. 22, 943–949 (2003)

    Article  Google Scholar 

  14. Yagou, H., Ohtake, Y., Belyaev, A.: Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. In: Proceedings of Computer Graphics International, pp. 28–33 (2003)

    Google Scholar 

  15. Sun, X., Rosin, P., Martin, R., Langbein, F.: Fast and effective feature-preserving mesh denoising. IEEE Trans. Visual. Comput. Graph. 13, 925–938 (2007)

    Article  Google Scholar 

  16. Zheng, Y., Fu, H., Au, O.K.-C., Tai, C.-L.: Bilateral normal filtering for mesh denoising. IEEE Trans. Visual. Comput. Graph. 17(10), 1521–1530 (2011)

    Article  Google Scholar 

  17. Miropolsky, A., Fischer, A.: Reconstruction with 3d geometric bilateral filter. In: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, SM 2004, Aire-la-Ville, Switzerland, pp. 225–229. Eurographics Association (2004)

    Google Scholar 

  18. Deschaud, J.E., Goulette., F.: Point cloud non local denoising using local surface descriptor similarity. ISPRS Technical Commission III Symposium, PCV 2010 - Photogrammetric Computer Vision and Image Analysis XXXVIII - Part 3A (2010)

    Google Scholar 

  19. He, L., Schaefer, S.: Mesh denoising via l0 minimization. ACM Trans. Graph. 32, 64:1–64:8 (2013)

    Google Scholar 

  20. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. In: Vaina, L. (ed.) Matters of Intelligence. Synthese Library, pp. 115–141. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  21. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)

    Article  Google Scholar 

  22. Yee, H., Pattanaik, S., Greenberg, D.P.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20, 39–65 (2001)

    Article  Google Scholar 

  23. Guy, G., Medioni, G.: Inferring global perpetual contours from local features. Int. J. Comput. Vis. 20, 113–133 (1996)

    Article  Google Scholar 

  24. Guy, G., Medioni, G.: Inference of surfaces, 3d curves, and junctions from sparse, noisy, 3d data. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1265–1277 (1997)

    Article  Google Scholar 

  25. Kim, Y., Varshney, A., Jacobs, D.W., Guimbretière, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7, 12:1–12:13 (2010)

    Google Scholar 

  26. Wu, J., Shen, X., Zhu, W., Liu, L.: Mesh saliency with global rarity. Graph. Models 75, 255–264 (2013)

    Article  Google Scholar 

  27. Mao, Z.H., Ma, L.Z., Zhao, M.X., Li, Z.: Feature-preserving mesh denoising based on contextual discontinuities. J. Zhejiang Univ. Sci. A 7(9), 1603–1608 (2006)

    Article  MATH  Google Scholar 

  28. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of Fifth International Conference on Computer Vision, pp. 902–907 (1995)

    Google Scholar 

  29. Rusu, R., Cousins, S.: 3d is here: Point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)

    Google Scholar 

  30. Epfl, computer graphics and geometry laboratory. http://lgg.epfl.ch/statues.php?p=dataset/

  31. Aim@shape repository. http://shapes.aim-at-shape.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumandeep Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dutta, S., Banerjee, S., Biswas, P.K., Bhowmick, P. (2015). Mesh Denoising Using Multi-scale Curvature-Based Saliency. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics