[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Maritime Awareness with Semantic Genetic Programming and Linear Scaling: Prediction of Vessels Position Based on AIS Data

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Abstract

Maritime domain awareness deals with the situational understanding of maritime activities that could impact the security, safety, economy or environment. It enables quick threat identification, informed decision making, effective action support, knowledge sharing and more accurate situational awareness. In this paper, we propose a novel computational intelligence framework, based on genetic programming, to predict the position of vessels, based on information related to the vessels past positions in a specific time interval. Given the complexity of the task, two well known improvements of genetic programming, namely geometric semantic operators and linear scaling, are integrated in a new and sophisticated genetic programming system. The work has many objectives, for instance assisting more quickly and effectively a vessel when an emergency arises or being able to chase more efficiently a vessel that is accomplishing illegal actions. The proposed system has been compared to two different versions of genetic programming and three non-evolutionary machine learning methods, outperforming all of them on all the studied test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Similar considerations hold for many types of crossover, including various kinds of geometric crossover [26].

  2. 2.

    Here we report the definition of the geometric semantic operators as given by Moraglio et al. for real functions domains, since these are the operators we will use in the experimental phase. For applications that consider other types of data, the reader is referred to [2].

References

  1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet. Programm. Evolvable Mach. 16(1), 73–81 (2015)

    Article  Google Scholar 

  5. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Weisberg, S.: Applied Linear Regression. Wiley Series in Prob. and Stat. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  8. Scholkopf, B., Smola, A.: Learning With Kernels: Support Vector Machines, Regularization, Optimization and Beyond. Adaptative computation and machine learning series. The MIT Press, Cambridge (2002)

    Google Scholar 

  9. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. Genet. Program. Theory Pract. 14, 3–29 (2013). Springer

    Google Scholar 

  10. Vanneschi, L.: Improving genetic programming for the prediction of pharmacokinetic parameters. Memetic Comput. 6(4), 255–262 (2014)

    Article  Google Scholar 

  11. Roy, J.: Anomaly detection in the maritime domain. In: Proceedings of SPIE, vol. 6945, pp. 69414–69450 (2008)

    Google Scholar 

  12. Roy, J., Davenport, M.: Exploitation of maritime domain ontologies for anomaly detection and threat analysis. In: Waterside Security Conference (WSS), pp. 1–8 (2010)

    Google Scholar 

  13. Laxhammar, R.: Anomaly detection for sea surveillance. In: 2008 11th International Conference on Information Fusion, pp. 1–8, June 2008

    Google Scholar 

  14. Chen, C.H., Khoo, L.P., Chong, Y.T., Yin, X.F.: Knowledge discovery using genetic algorithm for maritime situational awareness. Expert Syst. Appl. 41(6), 2742–2753 (2014)

    Article  Google Scholar 

  15. Riveiro, M., Falkman, G., Ziemke, T.: Visual analytics for the detection of anomalous maritime behavior. In: 12th International Conference on Information Visualisation, IV 2008, pp. 273–279, July 2008

    Google Scholar 

  16. Brax, C., Niklasson, L.: Enhanced situational awareness in the maritime domain: an agent-based approach for situation management. In: SPIE 7352, Intelligent Sensing, Situation Management, Impact Assessment, and Cyber-Sensing, pp. 1–10 (2009)

    Google Scholar 

  17. Kazemi, S., Abghari, S., Lavesson, N., Johnson, H., Ryman, P.: Open data for anomaly detection in maritime surveillance. Expert Syst. Appl. 40(14), 5719–5729 (2013)

    Article  Google Scholar 

  18. Lobo, V.: Application of self-organizing maps to the maritime environment. In: Popovich, V., Claramunt, C., Schrenk, M., Korolenko, K. (eds.) Information Fusion and Geographic Information Systems. Lecture Notes in Geoinformation and Cartography, pp. 19–36. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Villmann, T., Mernyi, E., Hammer, B.: Neural maps in remote sensing image analysis. Neural Netw. 16(34), 389–403 (2003)

    Article  Google Scholar 

  20. Hardman-Mountford, N., Richardson, A., Boyer, D., Kreiner, A., Boyer, H.: Relating sardine recruitment in the northern benguela to satellite-derived sea surface height using a neural network pattern recognition approach. Prog. Oceanogr. 59(23), 241–255 (2003)

    Article  Google Scholar 

  21. Niang, A., Gross, L., Thiria, S., Badran, F., Moulin, C.: Automatic neural classification of ocean colour reflectance spectra at the top of the atmosphere with introduction of expert knowledge. Remote Sens. Environ. 86(2), 257–271 (2003)

    Article  Google Scholar 

  22. Tetreault, B.: Use of the automatic identification system (AIS) for maritime domain awareness (MDA). In: Proceedings of MTS/IEEE OCEANS, vol. 2, pp. 1590–1594 (2005)

    Google Scholar 

  23. International Association of Maritime Aids to Navigation and Lighthouse Authorities (IALA): IALA guidelines on the universal automatic identification system (AIS) (2002)

    Google Scholar 

  24. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program Evolvable Mach. 15(2), 195–214 (2014)

    Article  Google Scholar 

  25. Castelli, M., Vanneschi, L., Silva, S.: Semantic search based genetic programming and the effect of introns deletion. IEEE Trans. Cybern. 44(1), 103–113 (2013). doi:10.1109/TSMCC.2013.2247754. ISSN: 2168-2267

    Article  Google Scholar 

  26. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Raid, G. et al. (ed.) GECCO 2009, 8–12 July, pp. 987–994. ACM (2009)

    Google Scholar 

  27. Poli, R., McPhee, N.F., Vanneschi, L.: The impact of population size on code growth in gp: Analysis and empirical validation. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. GECCO 2008, pp. 1275–1282. ACM (2008)

    Google Scholar 

  28. Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases in genetic programming using statistics. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 371–380. Springer, Heidelberg (2002)

    Google Scholar 

  29. Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: A study of diversity in multipopulation genetic programming. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 243–255. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Weka Machine Learning Project: Weka. http://www.cs.waikato.ac.nz/~ml/weka

Download references

Acknowledgments

The authors acknowledge project MassGP (PTDC/EEI-CTP/2975/2012), FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vanneschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vanneschi, L. et al. (2015). Improving Maritime Awareness with Semantic Genetic Programming and Linear Scaling: Prediction of Vessels Position Based on AIS Data. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics