Abstract
The performance of an Evolutionary Algorithm (EA) can be greatly influenced by its parameters. The optimal parameter settings are also not necessarily the same across different problems. Finding the optimal set of parameters is therefore a difficult and often time-consuming task. This paper presents results of parameter tuning experiments on the NSGA-II and NSGA-III algorithms using the ZDT test problems. The aim is to gain new insights on the characteristics of the optimal parameter settings and to study if the parameters impose the same effect on both NSGA-II and NSGA-III. The experiments also aim at testing if the rule of thumb that the mutation probability should be set to one divided by the number of decision variables is a good heuristic on the ZDT problems. A comparison of the performance of NSGA-II and NSGA-III on the ZDT problems is also made.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T.: Parallel optimization of evolutionary algorithms. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 418–427. Springer, Heidelberg (1994)
Das, I., Dennis, J.: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631–657 (1998)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601 (2014)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)
Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)
Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)
Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)
Ugolotti, R., Cagnoni, S.: Analysis of evolutionary algorithms using multi-objective parameter tuning. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 1343–1350. ACM, New York (2014)
Wessing, S., Beume, N., Rudolph, G., Naujoks, B.: Parameter tuning boosts performance of variation operators in multiobjective optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 728–737. Springer, Heidelberg (2010)
While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Shaker Verlag (1999)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Andersson, M., Bandaru, S., Ng, A., Syberfeldt, A. (2015). Parameter Tuning of MOEAs Using a Bilevel Optimization Approach. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-15934-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15933-1
Online ISBN: 978-3-319-15934-8
eBook Packages: Computer ScienceComputer Science (R0)