[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parameter Tuning of MOEAs Using a Bilevel Optimization Approach

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9018))

Included in the following conference series:

Abstract

The performance of an Evolutionary Algorithm (EA) can be greatly influenced by its parameters. The optimal parameter settings are also not necessarily the same across different problems. Finding the optimal set of parameters is therefore a difficult and often time-consuming task. This paper presents results of parameter tuning experiments on the NSGA-II and NSGA-III algorithms using the ZDT test problems. The aim is to gain new insights on the characteristics of the optimal parameter settings and to study if the parameters impose the same effect on both NSGA-II and NSGA-III. The experiments also aim at testing if the rule of thumb that the mutation probability should be set to one divided by the number of decision variables is a good heuristic on the ZDT problems. A comparison of the performance of NSGA-II and NSGA-III on the ZDT problems is also made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T.: Parallel optimization of evolutionary algorithms. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 418–427. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Das, I., Dennis, J.: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601 (2014)

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

    Article  Google Scholar 

  6. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  7. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)

    Article  Google Scholar 

  8. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)

    Google Scholar 

  9. Ugolotti, R., Cagnoni, S.: Analysis of evolutionary algorithms using multi-objective parameter tuning. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 1343–1350. ACM, New York (2014)

    Google Scholar 

  10. Wessing, S., Beume, N., Rudolph, G., Naujoks, B.: Parameter tuning boosts performance of variation operators in multiobjective optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 728–737. Springer, Heidelberg (2010)

    Google Scholar 

  11. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)

    Article  Google Scholar 

  12. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Shaker Verlag (1999)

    Google Scholar 

  13. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andersson, M., Bandaru, S., Ng, A., Syberfeldt, A. (2015). Parameter Tuning of MOEAs Using a Bilevel Optimization Approach. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics