Abstract
Complex Event Processing (CEP) detects complex events or patterns of event sequences based on a set of rules defined by a domain expert. However, it lowers the reliability of a system as the set of rules defined by an expert changes along with dynamic changes in the domain environment. A human error made by an expert is another factor that may undermine the reliability of the system. In an effort to address such problems, this study introduces Collaborative Rule Mining Engine (CRME) designed to automatically mine rules based on the history of decisions made by a domain expert by adopting a collaborative filtering approach, which is effective in mimicking and predicting human decision-making in an environment where there are sufficient data or information to do so. Furthermore, this study suggests an adaptive CEP technique, which does not hamper the reliability since it prevents potential errors caused by mistakes of domain experts and adapts to changes in the domain environment on its own as it is linked to the system proposed by Bharagavi [10]. In a bid to verify this technique, an automated stocks trading system will be established and its performance will be measured using the rate of return.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Drools Expert User Guide, Version 5.4.0 CR1, JBoss Drools Team, pp. 31–33 (2012)
Esper Reference, Version 4.9.0, Esper Team and Esper Tech Inc, pp. 441–443 (2012)
Paschke, A., Kozlenkov, A., Boley, H.: A homogenous reaction rule language for complex event processing. In: Proceedings of 2nd International Workshop on Event Driven Architecture and Event Processing Systems (EDA-PS) (2007)
Turchin, Y., Gal, A., Wasserkrug, S.: Tuning complex event processing rules using the prediction-correction paradigm. In: Proceedings of 3rd ACM International Conference on Distributed Event-based Systems (DEBS 2009), pp. 1–12 (2009)
Hobbach, B., Seeger, B.: Anomaly management using complex event processing: extending database technology. In: Proceedings of the 16th ACM International Conference on Extending Database Technology (EDBT 2013), pp. 149–154 (2013)
JBoss Drools Team, Drools Guvnor User Guide, Ver.5.4.0 CRI, pp. 1–2 (2012)
Bhargavi, R., Pathak, R., Vaidehi, V.: Dynamic complex event processing—Adaptive rule engine. In: 2013 International Conference on Information Technology (ICRTIT) Recent Trends. IEEE (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lee, OJ., You, E., Hong, MS., Jung, J.J. (2015). Adaptive Complex Event Processing Based on Collaborative Rule Mining Engine. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9011. Springer, Cham. https://doi.org/10.1007/978-3-319-15702-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-15702-3_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15701-6
Online ISBN: 978-3-319-15702-3
eBook Packages: Computer ScienceComputer Science (R0)