Abstract
We assess a possibility of applying automated image analysis to immunofluorescence microphotographs from confocal laser scanning microscopy (CLSM). Several modes of automated analysis were tested to inspect differentiation of voltage dependent calcium channel subunits from a model of nerve cells PC12 (rat pheochromocytoma) subjected to electroporation (EP), with regard to extracellular calcium level. The objective of the experiments was evaluating sensitivity of the channel expression to the presence of calcium and electroporation voltage. For this purpose non-selective nanopores of a controlled conductivity were generated in the cell membrane using electroporation, at physiological or increased extracellular calcium concentrations. Introduction of Ca2+ into the cells was possible through electropores and physiological voltage-dependent calcium channels. Two subunits of calcium channel (α1H and α1G) were immunofluorescentically stained and the automated analysis of changes in cellular morphology was performed, based on comparative assessment of the fluorescence signal. The automated analysis allowed apparently higher observation capabilities. The results showed morphological changes in the channel subunits and higher expression of the channel, following its exposition to electric field or calcium.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kanade, T., et al.: Cell image analysis: Algorithms, system and applications. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), IEEE (2011)
Wählby, C., Erlandsson, F., Bengtsson, E., Zetterberg, A.: Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei. Cytometry 47(1), 32–41 (2002)
Yin, Z., Su, H., Ker, E., Li, M., Li, H.: Cell-Sensitive Microscopy Imaging for Cell Image Segmentation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 41–48. Springer, Heidelberg (2014)
Liu, H., Felix, R., Gurnett, C., De Waard, M., Witcher, D.R., Campbell, K.P.: Expression and Subunit Interaction of Voltage-Dependent Ca2+ Channels in PC12 Cells. The Journal of Neuroscience 16(23), 7557–7565 (1996)
Beam, K.G., Adams, B.A., Niidome, T., Numa, S.: Tanabe T Function of a truncated dihydropyridine receptor as both voltage sensor and calcium channel. Nature 360, 169–171 (1992)
Ghosh, A., Ginty, D.D., Bading, H., Greenberg, M.E.: Calcium regulation of gene expression in neuronal cells. J. Neurobiol. 25, 294–303 (1994)
Dunlap, K.: Luebke JI, Turner TJ Exocytotic Ca2+ channels in mammalian central neurons. Trends. Neurosci. 18, 89–96 (1995)
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nature Methods 9(7), 676–682 (2012). doi:10.1038/nmeth.2019
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL (2008). http://www.R-project.org
Huang, L.-K., Wang, M.-J.J.: Image thresholding by minimizing the measure of fuzziness. Pattern Recognition 28(1), 41–51 (1995)
Prewitt, J.M.S., Mendelsohn, M.L.: The analysis of cell images. Annals of the New York Academy of Sciences 128, 1035–1053 (1966)
Li, C.H., Lee, C.K.: Minimum Cross Entropy Thresholding. Pattern Recognition 26(4), 617–625 (1993)
Kapur, J.N., Sahoo, P.K., Wong, A.C.K.: A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Graphical Models and Image Processing 29(3), 273–285 (1985)
Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognition 19 (1986)
Tsai, W.: Moment-preserving thresholding: a new approach. Computer Vision, Graphics, and Image Processing 29, 377–393 (1985)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man Cyber. 9, 62–66 (1979). doi:10.1109/TSMC.1979.4310076
Doyle, W.: Operation useful for similarity-invariant pattern recognition. Journal of the Association for Computing Machinery 9, 259–267 (1962). doi:10.1145/321119.321123
Shanbhag, A.G.: Utilization of information measure as a means of image thresholding. Graph. Models Image Process. (Academic Press, Inc.) 56(5), 414–419, ISSN 1049-9652 (1994)
Zack, G.W., Rogers, W.E., Latt, S.A.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem 25(7), 741–53. PMID 70454 (1977)
Yen, J.C., Chang, F.J., Chang, S.: A New Criterion for Automatic Multilevel Thresholding. IEEE Trans. on Image Processing 4(3), 370–378, ISSN 1057-7149, (1995). doi:10.1109/83.366472
Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics 8, 630–632 (1978)
Henriques, R., Lelek, M., Fornasiero, E.F., Valtorta, F.: Christophe Zimmer & Musa M Mhlanga. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nature Methods 7, 339–340. (2010). doi:10.1038/nmeth0510-339
Kullback, S.: Information Theory and Statistics. Dover, New York (1968)
Puzicha, J., Hofmann, T., Buhmann, J.M.: Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In: Proceedings of CVPR (June 1997)
Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: IEEE International Conference on Computer Vision, pp. 59–66 (January 1998)
Klockner, U., Lee, J.H., Cribbs, L.L., Daud, A., Hescheler, J., Pereverzev, A., Perez-Reyes, E., Schneider, T.: Comparison of the Ca2+ currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11, 4171–4178 (1999)
Tang, L.: Electroporation for drug and gene delivery in cancer therapy. Curr. Drug. Metab. 14(3), 271 (2013)
Gibot, L., Wasungu, L., Teissié, J., Rols, M.P.: Antitumor drug delivery in multicellular spheroids by electropermeabilization. J. Control Release 28, 167(2), 138–47 (2013)
Kulbacka, J., Daczewska, M., Dubińska-Magiera, M., Choromańska, A., Rembiałkowska, N., Surowiak, P., Kulbacki, M., Kotulska, M., Saczko, J.: Doxorubicin delivery enhanced by electroporation to gastrointestinal adenocarcinoma cells with P-gp overexpression. Bioelectrochemistry. pii: S1567–5394(14) 00065-6 (April 4, 2014)
Kulbacka, J., Kotulska, M., Rembiałkowska, N., Choromańska, A., Kamińska, I., Garbiec, A., Rossowska, J., Daczewska, M., Jachimska, B., Saczko, J.: Cellular stress induced by photodynamic reaction with CoTPPS and MnTMPyPCl5 in combination with electroporation in human colon adenocarcinoma cell lines (LoVo and LoVoDX). Cell Stress Chaperones 18(6), 719–731 (2013)
Nesin, V., Bowman, A.M., Xiao, S., Pakhomov, A.G.: Cell permeabilization and inhibition of voltage-gated Ca(2+) and Na(+) channel currents by nanosecond pulsed electric field. Bioelectromagnetics 33(5), 394–404 (2012)
Pakhomov, A.G., Kolb, J., White, J., Shevin, R., Pakhomova, O.N., Schoenbach, K.S.: Membrane effects of ultrashort (nanosecond) electric stimuli. Society for Neuroscience 37th Annual Meeting; Nov. 2–7, 2007; San Diego, CA. 2007a. 2007 Neuroscience Meeting Planner CD-ROM, Presentation Number: 317.14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kulbacka, J. et al. (2015). Automated Analysis of Images from Confocal Laser Scanning Microscopy Applied to Observation of Calcium Channel Subunits in Nerve Cell Model Line Subjected Electroporation and Calcium. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9012. Springer, Cham. https://doi.org/10.1007/978-3-319-15705-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-15705-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15704-7
Online ISBN: 978-3-319-15705-4
eBook Packages: Computer ScienceComputer Science (R0)