[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

How Hard Is the LP Relaxation of the Potts Min-Sum Labeling Problem?

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

An important subclass of the min-sum labeling problem (also known as discrete energy minimization or valued constraint satisfaction) is the pairwise min-sum problem with arbitrary unary costs and attractive Potts pairwise costs (also known as the uniform metric labeling problem). In analogy with our recent result, we show that solving the LP relaxation of the Potts min-sum problem is not significantly easier than that of the general min-sum problem and thus, in turn, the general linear program. This suggests that trying to find an efficient algorithm to solve the LP relaxation of the Potts min-sum problem has a fundamental limitation. Our constructions apply also to integral solutions, yielding novel reductions of the (non-relaxed) general min-sum problem to the Potts min-sum problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Applied Mathematics 123(1-3), 155–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  3. Chekuri, C., Khanna, S., Naor, J., Zosin, L.: A linear programming formulation and approximation algorithms for the metric labeling problem. SIAM Journal on Discrete Mathematics 18(3), 608–625 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chuzhoy, J., Naor, J.: The hardness of metric labeling. SIAM J. Computation 36(5), 1376–1386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N., Rother, C.: A comparative study of modern inference techniques for discrete energy minimization problem. In: Conf. on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  6. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and markov random fields. J. ACM 49(5), 616–639 (2002)

    Article  MathSciNet  Google Scholar 

  7. Koster, A., van Hoesel, S.P.M., Kolen, A.W.J.: The partial constraint satisfaction problem: Facets and lifting theorems. Operations Research Letters 23(3-5), 89–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kovtun, I.: Partial optimal labelling search for a NP-hard subclass of (max,+) problems. In: Conf. German Assoc. for Pattern Recognition, pp. 402–409 (2003)

    Google Scholar 

  9. Osokin, A., Vetrov, D., Kolmogorov, V.: Submodular decomposition framework for inference in associative Markov networks with global constraints. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1889–1896 (2011)

    Google Scholar 

  10. Průša, D., Werner, T.: Universality of the local marginal polytope. In: Conf. on Computer Vision and Pattern Recognition, pp. 1738–1743. IEEE Computer Society (2013)

    Google Scholar 

  11. Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: Conf. on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  12. Schlesinger, D., Flach, B.: Transforming an arbitrary MinSum problem into a binary one. Tech. Rep. TUD-FI06-01, Dresden University of Technology, Germany (April 2006)

    Google Scholar 

  13. Shlezinger, M.I.: Syntactic analysis of two-dimensional visual signals in noisy conditions. Cybernetics and Systems Analysis 12(4), 612–628 (1976)

    Google Scholar 

  14. Swoboda, P., Savchynskyy, B., Kappes, J.H., Schnörr, C.: Partial optimality via iterative pruning for the Potts model. In: Conf. on Scale Space and Variational Methods in Computer Vision (2013)

    Google Scholar 

  15. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(6), 1068–1080 (2008)

    Article  Google Scholar 

  16. Živný, S.: The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies. Springer (2012)

    Google Scholar 

  17. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1(1-2), 1–305 (2008)

    MATH  Google Scholar 

  18. Werner, T.: A linear programming approach to max-sum problem: A review. IEEE Trans. Pattern Analysis and Machine Intelligence 29(7), 1165–1179 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Průša, D., Werner, T. (2015). How Hard Is the LP Relaxation of the Potts Min-Sum Labeling Problem?. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics