[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Precise 3D Measurements for Tracked Objects from Synchronized Stereo-Video Sequences

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Included in the following conference series:

Abstract

This paper presents a system suitable to perform precise and fast 3D measurements from synchronized stereo-video sequences and provide target’s georeference in a known reference system. To this direction we combine a robust tracker with photogrammetric techniques into a fast and reliable system. For tracking objects and people, we adopt and modify a stable human tracker able to cope efficiently with the trade-off between model stability and adaptability. For achieving accurate and precise 3D measurements, camera calibration was implemented in order to recover the intrinsic parameters of the cameras of the configuration. Finally, for precise and reliable calculation of the 3D trajectory of the moving person, we apply bundle adjustment for all frames. Bundle adjustment is a very accurate algorithm and has the advantages of being tolerant of missing data while providing a true Maximum Likelihood estimate. The results have been tested and evaluated in real life conditions for proving the robustness and the accuracy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avidan, S.: Support Vector Tracking. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  2. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: Proc. IEEE CVPR, vol. 2, pp. 775–781 (2005)

    Google Scholar 

  3. Doulamis, A., Ntalianis, K., Doulamis, N., Kollias, S.: An Efficient Fully-Unsupervised Video Object Segmentation Scheme Using an Adaptive Neural Network Classifier Architecture. IEEE Trans. on NNs 14(3), 616–630 (2003)

    Article  Google Scholar 

  4. Stalder, S., Grabner, H., Van Gool, L.: Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In: Proc. of IEEE ICCV, pp. 1409–1416 (2009)

    Google Scholar 

  5. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised support vector machines. In: Proc. of IEEE ICCV, pp. 1–8 (2007)

    Google Scholar 

  7. Yu, Q., Dinh, T.B., Medioni, G.G.: Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Cehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking. In: Proc of IEEE ICCV, pp. 1363–1370 (2011)

    Google Scholar 

  9. Xing, J., Ai, H., Lao, S.: Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1200–1207 (2009)

    Google Scholar 

  10. Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Zhang, L., Yuan, L., Nevatia, R.: Global data association for multi-object tracking using network flows. In: Proc. of IEEE CVPR, pp. 1–8 (2008)

    Google Scholar 

  12. Henriques, J.F., Caseiro, R., Batista, J.: Globally optimal solution to multi-object tracking with merged measurements. In: Proc. of IEEE ICCV, pp. 2470–2477 (2011)

    Google Scholar 

  13. Wan, D., Zhaou, J.: Stereo Vision Using Two PTZ Cameras. Computer Vision and Image Understanding 112(2), 184–194 (2008)

    Article  Google Scholar 

  14. Hart, J., Scassellati, B., Zucker, S.W.: Epipolar Geometry for Humanoid Robotic Heads. In: Proc. of 4th International Cognitive Vision Workshop, pp. 24–36 (2008)

    Google Scholar 

  15. Kumar, S., Micheloni, C., Piciarelli, C.: Stereo localization using dual PTZ cameras. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1061–1069. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Int. Journal Robotics and Automation 3(4), 323–344 (1987)

    Article  Google Scholar 

  17. Heikkilä, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: CVP 1997 (1997)

    Google Scholar 

  18. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. on PAMI 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  19. Kokkinos, M., Doulamis, N.D., Doulamis, A.D.: Local Geometrically Enriched Mixtures for Stable and Robust Human Tracking in Detecting Falls. Int. J. Adv. Robot Syst. 10, 72 (2013), doi:10.5772/54049

    Google Scholar 

  20. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press

    Google Scholar 

  21. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Agrafiotis, P., Georgopoulos, A., Doulamis, A.D., Doulamis, N.D. (2014). Precise 3D Measurements for Tracked Objects from Synchronized Stereo-Video Sequences. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_73

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics