Abstract
This paper presents a system suitable to perform precise and fast 3D measurements from synchronized stereo-video sequences and provide target’s georeference in a known reference system. To this direction we combine a robust tracker with photogrammetric techniques into a fast and reliable system. For tracking objects and people, we adopt and modify a stable human tracker able to cope efficiently with the trade-off between model stability and adaptability. For achieving accurate and precise 3D measurements, camera calibration was implemented in order to recover the intrinsic parameters of the cameras of the configuration. Finally, for precise and reliable calculation of the 3D trajectory of the moving person, we apply bundle adjustment for all frames. Bundle adjustment is a very accurate algorithm and has the advantages of being tolerant of missing data while providing a true Maximum Likelihood estimate. The results have been tested and evaluated in real life conditions for proving the robustness and the accuracy of the system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avidan, S.: Support Vector Tracking. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(8), 1064–1072 (2004)
Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: Proc. IEEE CVPR, vol. 2, pp. 775–781 (2005)
Doulamis, A., Ntalianis, K., Doulamis, N., Kollias, S.: An Efficient Fully-Unsupervised Video Object Segmentation Scheme Using an Adaptive Neural Network Classifier Architecture. IEEE Trans. on NNs 14(3), 616–630 (2003)
Stalder, S., Grabner, H., Van Gool, L.: Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In: Proc. of IEEE ICCV, pp. 1409–1416 (2009)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised support vector machines. In: Proc. of IEEE ICCV, pp. 1–8 (2007)
Yu, Q., Dinh, T.B., Medioni, G.G.: Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)
Cehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking. In: Proc of IEEE ICCV, pp. 1363–1370 (2011)
Xing, J., Ai, H., Lao, S.: Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1200–1207 (2009)
Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)
Zhang, L., Yuan, L., Nevatia, R.: Global data association for multi-object tracking using network flows. In: Proc. of IEEE CVPR, pp. 1–8 (2008)
Henriques, J.F., Caseiro, R., Batista, J.: Globally optimal solution to multi-object tracking with merged measurements. In: Proc. of IEEE ICCV, pp. 2470–2477 (2011)
Wan, D., Zhaou, J.: Stereo Vision Using Two PTZ Cameras. Computer Vision and Image Understanding 112(2), 184–194 (2008)
Hart, J., Scassellati, B., Zucker, S.W.: Epipolar Geometry for Humanoid Robotic Heads. In: Proc. of 4th International Cognitive Vision Workshop, pp. 24–36 (2008)
Kumar, S., Micheloni, C., Piciarelli, C.: Stereo localization using dual PTZ cameras. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1061–1069. Springer, Heidelberg (2009)
Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Int. Journal Robotics and Automation 3(4), 323–344 (1987)
Heikkilä, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: CVP 1997 (1997)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. on PAMI 22(11), 1330–1334 (2000)
Kokkinos, M., Doulamis, N.D., Doulamis, A.D.: Local Geometrically Enriched Mixtures for Stable and Robust Human Tracking in Detecting Falls. Int. J. Adv. Robot Syst. 10, 72 (2013), doi:10.5772/54049
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Agrafiotis, P., Georgopoulos, A., Doulamis, A.D., Doulamis, N.D. (2014). Precise 3D Measurements for Tracked Objects from Synchronized Stereo-Video Sequences. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_73
Download citation
DOI: https://doi.org/10.1007/978-3-319-14364-4_73
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14363-7
Online ISBN: 978-3-319-14364-4
eBook Packages: Computer ScienceComputer Science (R0)