[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An X-FEM Based Approach for Topology Optimization of Continuum Structures

  • Chapter
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 256))

Abstract

In this study, extended finite element (X-FEM) is implemented to represent topology optimization of continuum structures in a fixed grid design domain. An evolutionary optimization algorithm is used to gradually remove inefficient material from the design space during the optimization process. In the case of 2D problems, evolution of the design boundary which is supper-imposed on the fixed grid finite element framework is captured using isolines of structural performance. The proposed method does not need any remeshing approach as the X-FEM scheme can approximate the contribution of boundary elements in the finite element frame work of the problem. Therefore the converged solutions come up with clear and smooth boundaries which need no further interpretation. This approach is then extended to 3D by using a 3D X-FEM scheme implemented on isosurface topology design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdi, M., Wildman, R., Ashcroft, I.: Evolutionary topology optimization using X-FEM and isolines. Engineering Optimization (in press, 2013)

    Google Scholar 

  2. Allaire, G., Jouve, F., Toader, A.M.: Structural optimisation using sensitivity analysis and a level set method. J. Comp. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aremu, A., Ashcroft, I., Wildman, R., Hague, R., Tuck, C., Brackett, D.: The effects of BESO parameters on an industrial designed component for additive manufacture. Proc. IMechE Part B: J. Engineering Manufacture (2012) (in press)

    Google Scholar 

  4. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5), 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  6. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71, 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  7. Dunning, P., Kim, H.A., Mullineux, G.: Error analysis of fixed grid formulation for boundary based structural optimisation. In: 7th ASMO UK / ISSMO Conference on Engineering Design Optimisation, Bath, UK, July 7-8 (2008)

    Google Scholar 

  8. Lee, D., Park, S., Shin, S.: Node-wise topological shape optimum design for structural reinforced modeling of Michell-type concrete deep beams. J. Solid Mech. Mater. Eng. 1(9), 1085–1096 (2007)

    Google Scholar 

  9. Li, L., Wang, M.Y., Wei, P.: XFEM schemes for level set based structural optimization. Frontiers of Mechanical Engineering 7(4), 335–356 (2012)

    Article  Google Scholar 

  10. Maute, K., Ramm, E.: Adaptive topology optimisation. Struct. Optim. 10, 100–112 (1995)

    Article  Google Scholar 

  11. Miegroet, L.V., Duysinx, P.: Stress concentration minimization of 2D Filets using X-FEM and level set description. Structural and Multidisciplinary Optimisation 33, 425–438 (2007)

    Article  Google Scholar 

  12. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  13. Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations 15(8), 1031–1048 (1988)

    Article  Google Scholar 

  14. Sigmund, O.: A 99 line topology optimisation code written in Matlab. Struct. Multidiscipl. Optim. 21, 120–127 (2001)

    Google Scholar 

  15. Sukumar, N., Chopp, D.L., Moës, N., Belytschko, T.: Modeling Holes and Inclusions by Level Sets in the Extended Finite Element Method. Computer Methods in Applied Mechanics and Engineering 190, 6183–6200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Victoria, M., Martí, P., Querin, O.M.: Topology design of two-dimensional continuum structures using isolines. Computer and Structures 87, 101–109 (2009)

    Article  Google Scholar 

  17. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimisation. Comput. Meth. Appl. Eng. 192, 227–246 (2003)

    Article  MATH  Google Scholar 

  18. Wei, P., Wang, M.Y., Xing, X.: A study on X-FEM in continuum structural optimization using level set method. Computer-Aided Design 42, 708–719 (2010)

    Article  Google Scholar 

  19. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Computers & Structures 49, 885–896 (1993)

    Article  Google Scholar 

  20. Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, O.M.: Bidirectional evolutionary method for stiffness optimisation. AIAA J. 37(11), 1483–1488 (1999)

    Article  Google Scholar 

  21. Zhou, M., Rozvany, G.I.N.: The COG algorithm, Part II: Topological, geometrical and general shape optimisation. Comp. Meth. Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Abdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdi, M., Ashcroft, I., Wildman, R. (2014). An X-FEM Based Approach for Topology Optimization of Continuum Structures. In: Obaidat, M., Filipe, J., Kacprzyk, J., Pina, N. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-03581-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03581-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03580-2

  • Online ISBN: 978-3-319-03581-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics