[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automated Test Data Generation for Coupling Based Integration Testing of Object Oriented Programs Using Particle Swarm Optimization (PSO)

  • Conference paper
Genetic and Evolutionary Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 238))

Abstract

Automated test data generation is a challenging problem for researchers in the area of software testing. Up until now, most of the work on test data generation is at unit level. Until level test data generation involves the execution of test path at unit level where interaction with other components is minimum. Test data generation for unit testing involves a single path and there is no usage of formal and actual parameters. The problem of automated test data generation becomes very challenging when we move to other levels of testing including integration testing and system level testing. At integration level, the variables are passed as arguments to other components and variables change their names; also multiple paths are executed from different components to ensure proper functionality. Recently evolutionary approaches have been proven a powerful tool for test data generation. In this paper, we have proposed a novel approach for test data generation for coupling based integration testing using particle swarm optimization. Up until now, there is no research for test data generation for coupling based integration testing using particle swarm optimization. Our approach takes the coupling path as input, containing different sub paths, and generates the test data using particle swarm optimization. We have also proposed architecture of tool for automation of our approach. In future, we will implement our proposed approach and will perform different experiments to prove its significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baresel, A., Sthamer, H., Schmidt, M.: Fitness Function Design to improve Evolutionary Structural Testing. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), New York, USA (July 2002)

    Google Scholar 

  2. Bashir, M.B., Nadeem, A.: A State Based Fitness Function for Evolutionary Testing of Object-Oriented Programs. In: Lee, R., Ishii, N. (eds.) Software Engineering Research, Management and Applications 2009. SCI, vol. 253, pp. 83–94. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Cheon, Y., Kim, M.Y., Perumandla, A.: A Complete Automation of Unit Testing for Java Programs. In: The 2005 International Conference on Software Engineering Research and Practice (SERP), Las Vegas, Nevada, USA (June 2005)

    Google Scholar 

  4. Cheon, Y., Kim, M.: A specification-based fitness function for evolutionary testing of object-oriented programs. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Washington, USA (July 2006)

    Google Scholar 

  5. Dharsana, C.S.S., Askarunisha, A.: Java based Test case Generation and Optimization Using Evolutionary Testing. In: International Conference on Computational Intelligence and Multimedia Applications, Sivakasi, India (December 2007)

    Google Scholar 

  6. Jones, B., Sthamer, H., Eyres, D.: Automatic structural testing using genetic algorithms. Software Engineering Journal 11(5), 299–306 (1996)

    Article  Google Scholar 

  7. Liaskos, K., Roper, M., Wood, M.: Investigating data-flow coverage of classes using evolutionary algorithms. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, England (July 2007)

    Google Scholar 

  8. McGraw, G., Michael, C., Schatz, M.: Generating software test data by evolution. IEEE Transactions on Software Engineering 27(12), 1085–1110 (2001)

    Article  Google Scholar 

  9. McMinn, P., Holcombe, M.: The state problem for evolutionary testing. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2488–2498. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. McMinn, P.: Search-based Software Test Data Generation: a Survey. Journal of Software Testing, Verifications, and Reliability 14(2), 105–156 (2004)

    Article  Google Scholar 

  11. Pargas, R., Harrold, M., Peck, R.: Test-data generation using genetic algorithms. Software Testing. Verification and Reliability 9(4), 263–282 (1999)

    Article  Google Scholar 

  12. Roper, M.: Computer aided software testing using genetic algorithms. In: 10th International Software Quality Week, San Francisco, USA (May 1997)

    Google Scholar 

  13. Sthamer, H.: The automatic generation of software test data using genetic algorithms. PhD Thesis, University of Ghamorgan, Pontyprid, Wales, Great Britain (1996)

    Google Scholar 

  14. Seesing, A., Gross, H.: A Genetic Programming Approach to Automated Test Generation for Object-Oriented Software. International Transactions on Systems Science and Applications 1(2), 127–134 (2006)

    Google Scholar 

  15. Tracey, N., Clark, J., Mander, K., McDermid, J.: Automated test-data generation for exception conditions. Software—Practice and Experience, 61–79 (January 2000)

    Google Scholar 

  16. Tonella, P.: Evolutionary Testing of Classes. In: Proceedings of the ACM SIGSOFT International Symposium of Software Testing and Analysis, Boston, MA, pp. 119–128 (July 2004)

    Google Scholar 

  17. Watkins, A.: The automatic generation of test data using genetic algorithms. In: Proceedings of the Fourth Software Quality Conference, pp. 300–309. ACM (1995)

    Google Scholar 

  18. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic structural testing. Information and Software Technology Special Issue on Software Engineering using Metaheuristic Innovative Algorithms 43, 841–854 (2001)

    Google Scholar 

  19. Wegener, J., Buhr, K., Pohlheim, H.: Automatic test data generation for structural testing of embedded software systems by evolutionary testing. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), New York, USA, pp. 1233–1240. Morgan Kaufmann (July 2002)

    Google Scholar 

  20. Copeland, L.: A Practitioner’s Guide to Software Test Design. STQE Publishing (2004)

    Google Scholar 

  21. Beizer, B.: Software Testing Techniques. International Thomson Computer Press (1990)

    Google Scholar 

  22. Fiedler, S.P.: Object-oriented unit testing. Hewlett-Packard Journal 40(2), 69–75 (1989)

    Google Scholar 

  23. Smith, M.D., Robson, D.J.: Object-oriented programming: The problems of validation. In: Sixth International Conference onSoftware Maintenance, pp. 272–282. IEEE Computer Society Press, Los Alamitos (1990); Overbeck, J.: Integration testing for object-oriented software. PhD Dissertation, Vienna University of Technology (1994)

    Google Scholar 

  24. Pande, H.D., Landi, W.A., Ryder, B.G.: Interprocedural def–use associations for C systems with single level pointers. IEEE Transactions on Software Engineering 20(5), 385–403 (1994)

    Article  MATH  Google Scholar 

  25. Chen, M.-H., Kao, M.-H.: Testing object-oriented programs—An integrated approach. In: Proceedings of the 10th International Symposium on Software Reliability Engineering, pp. 73–83. IEEE Computer Society Press, Boca Raton (1999); Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C.: A test strategy for object-oriented systems. In: Nineteenth Annual International Computer Software and Applications Conference, pp. 239–244. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  26. Edwards, S.H.: Black-box testing using flowgraphs: An experimental assessment of effectiveness and automation potential. Software Testing, Verification and Reliability 10(4), 249–262 (2000)

    Article  Google Scholar 

  27. Perry, D.E., Kaiser, G.E.: Adequate testing and object-oriented programming. Journal of Object-oriented Programming 2(5), 13–19 (1990)

    Google Scholar 

  28. Hong, H.S., Kwon, Y.R., Cha, S.D.: Testing of object-oriented programs based on finite state machines. In: The 1995 Asia Pacific Software Engineering Conference, pp. 234–241. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  29. Parrish, A.S., Borie, R.B., Cordes, D.W.: Automated flow graph-based testing of object-oriented software modules. Journal of Systems and Software 23(2), 95–109 (1993)

    Article  Google Scholar 

  30. Turner, C.D., Robson, D.J.: The state-based testing of object-oriented programs. In: Conference on Software Maintenance, pp. 302–310. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  31. Doong, R.-K., Frankl, P.: Case studies on testing object-oriented programs. In: Fourth Symposium on Software Testing, Analysis and Verification, pp. 165–177. ACM Press, New York (1991)

    Chapter  Google Scholar 

  32. Chen, H.Y., Tse, T.H., Chan, F.T., Chen, T.Y.: In black and white: An integrated approach to class-level testing of object-oriented programs. ACM Transactions on Software Engineering and Methodology 7(3), 250–295 (1998)

    Article  Google Scholar 

  33. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  34. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: Second ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 154–163. ACM Press, New York (1994)

    Chapter  Google Scholar 

  35. Alexander, R.T.: Testing the polymorphic relationships of object-oriented components. Technical Report ISE-TR-99-02, Department of Information and Software Engineering, George Mason University (February 1999)

    Google Scholar 

  36. Alexander, R.T., Offutt, J.: Analysis techniques for testing polymorphic relationships. In: Thirtieth International Conference on Technology of Object-oriented Languages and Systems (TOOLS30), Santa Barbara, CA, pp. 104–114 (1999)

    Google Scholar 

  37. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria. IEEE Transactions on Software Engineering 14(10), 1483–1498 (1988)

    Article  MathSciNet  Google Scholar 

  38. Rapps, S., Weyuker, W.J.: Selecting software test data using data flow information. IEEE Transactions on Software Engineering 11(4), 367–375 (1985)

    Article  MATH  Google Scholar 

  39. Alexander, R.T.: Testing the polymorphic relationships of object-oriented programs. Dissertation, George Mason University (2001)

    Google Scholar 

  40. Alexander, R.T., Offutt, J.: Criteria for testing polymorphic relationships. In: Proceedings of the International Symposium on Software Reliability and Engineering (ISSRE 2000). IEEE Computer Society, SanJose (2000)

    Google Scholar 

  41. Jin, Z., Jefferson Offutt, A.: Coupling-based Criteria for Integration Testing. The Journal of Software Testing, Verification, and Reliability 8(3), 133–154 (1998)

    Article  Google Scholar 

  42. Liu, X., Zhang, M., Bai, Z., Wang, L., Du, W., Wang, Y.: Function Call Flow based Fitness Function Design in Evolutionary Testing. In: APSEC 2007 Proceedings of the 14th Asia-Pacific Software Engineering Conference, Nagoya, Japan, December 5-7, pp. 57–64 (2007)

    Google Scholar 

  43. Baresel, A., Sthamer, H., Schmidt, M.: Fitness function design to improve evolutionary structural testing. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), New York, USA, pp. 1329–1336 (July 2002)

    Google Scholar 

  44. Kennedy, J., Eberhart, R.C.: Particle Swam Optimization. In: Proc. of IEEE International Conference on Neural Networks (ICNN 1995), Path, Australia, pp. 1942–(1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Ali Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Khan, S.A., Nadeem, A. (2014). Automated Test Data Generation for Coupling Based Integration Testing of Object Oriented Programs Using Particle Swarm Optimization (PSO). In: Pan, JS., Krömer, P., Snášel, V. (eds) Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-319-01796-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01796-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01795-2

  • Online ISBN: 978-3-319-01796-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics