[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adaptation of the Combined Image Similarity Index for Video Sequences

  • Conference paper
Image Processing and Communications Challenges 5

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 233))

Summary

One of the most relevant areas of research in the image analysis domain is the development of automatic image quality assessment methods which should be consistent with human perception of various distortions. During last years several metrics have been proposed as well as their combinations which lead to highly linear correlation with subjective opinions. One of the recently proposed ideas is the Combined Image Similarity Index which is the nonlinear combination of three metrics outperforming most of currently known ones for major image datasets. In this paper the applicability and extension of this metric for video quality assessment purposes is analysed and the obtained performance results are compared with some other metrics using the video quality assessment database recently developed at École Polytechnique Fédérale de Lausanne and Politecnico di Milano for quality monitoring over IP networks, known as EPFL-PoliMI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Proc. Letters 9(3), 81–84 (2002)

    Article  Google Scholar 

  2. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error measurement to Structural Similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

  3. Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for image quality assessment. In: Proc. 37th IEEE Asilomar Conf. on Signals, Systems and Computers (2003)

    Google Scholar 

  4. Forczmański, P., Furman, M.: Comparative Analysis of Benchmark Datasets for Face Recognition Algorithms Verification. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 354–362. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008 – a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics 10, 30–45 (2009)

    Google Scholar 

  6. Larson, E., Chandler, D.: Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging 19(1), 011006 (2010)

    Google Scholar 

  7. Sheikh, H., Wang, Z., Cormack, L., Bovik, A.: LIVE image quality assessment database release 2 (2005), http://live.ece.utexas.edu/research/quality

  8. Seshadrinathan, K., Soundararajan, R., Bovik, A., Cormack, L.: Study of Subjective and Objective Quality Assessment of Video. IEEE Trans. Image Proc. 19(6), 1427–1441 (2010)

    Article  MathSciNet  Google Scholar 

  9. Moorthy, A., Choi, L., de Veciana, G., Bovik, A.: Mobile Video Quality Assessment Database. In: Proc. IEEE ICC Workshop on Realizing Advanced Video Optimized Wireless Networks (2012)

    Google Scholar 

  10. Moorthy, A., Choi, L., Bovik, A., de Veciana, G.: Video Quality Assessment on Mobile Devices: Subjective, Behavioral and Objective Studies. IEEE J. Selected Topics in Signal Proc. 6(6), 652–671 (2012)

    Article  Google Scholar 

  11. De Simone, F., Tagliasacchi, M., Naccari, M., Tubaro, S., Ebrahimi, T.: A H.264/AVC video database for the evaluation of quality metrics. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Processing, pp. 2430–2433 (2010)

    Google Scholar 

  12. Sheikh, H., Bovik, A., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Proc. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  13. Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Proc. 15(2), 430–444 (2006)

    Article  Google Scholar 

  14. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A Feature Similarity index for image quality assessment. IEEE Trans. Image Proc. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  15. Okarma, K.: Combined full-reference image quality metric linearly correlated with subjective assessment. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 539–546. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Okarma, K.: Video quality assessment using the combined full-reference approach. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 2. AISC, vol. 84, pp. 51–58. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Okarma, K.: Combined Image Similarity Index. Optical Review 19(5), 349–354 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Okarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Okarma, K. (2014). Adaptation of the Combined Image Similarity Index for Video Sequences. In: S. Choras, R. (eds) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol 233. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01622-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01622-1_10

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01621-4

  • Online ISBN: 978-3-319-01622-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics