Abstract
Differences of molecular processes are reflected, among others, by differences in gene expression levels of the involved cells. High-throughput methods such as microarrays and deep sequencing approaches are increasingly used to obtain these expression profiles. Often differences of gene expression across different conditions such as tumor vs inflammation are investigated. Top scoring differential genes are considered as candidates for further analysis. Measured differences may not be related to a biological process as they can also be caused by variation in measurement or by other sources of noise. A method for reducing the influence of noise is to combine the available samples. Here, we analyze different types of combination methods, early and late aggregation and compare these statistical and positional rank aggregation methods in a simulation study and by experiments on real microarray data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ailon, N., Charikar, M., & Newman, A. (2008). Aggregating inconsistent information: Ranking and clustering. Journal of the ACM, 55, 23:1–23:27.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of USA, 96(12), 6745–6750.
Copeland, A. (1951). A ‘reasonable’ social welfare function. Seminar on Mathematics in Social Sciences, University of Michigan.
DeConde, R. P., Hawley, S., Falcon, S., Clegg, N., Knudsen, B., & Etzioni, R. (2006). Combining results of microarray experiments: A rank aggregation approach. Statistical Applications in Genetics and Molecular Biology, 5, 1–23.
Diaconis, P., & Graham, R. L. (1977). Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society. Series B (Methodological), 39(2), 262–268.
Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation revisited. Systems Research, 13(2), 86–93.
Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing top k lists. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 28–36). Philadelphia: SIAM.
Kolde, R., Laur, S., Adler, P., & Vilo, J. (2012). Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28(4), 573–580.
Lin, S. (2010). Rank aggregation methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 555–570.
Pihur, V., Datta, S., & Datta, S. (2007). Weighted rank aggregation of cluster validation measures: A monte carlo cross-entropy approach. Bioinformatics 23(13), 1607–1615.
Pihur, V., Datta, S., & Datta, S. (2008). Finding common genes in multiple cancer types through meta-analysis of microarray experiments: A rank aggregation approach. Genomics, 92(6), 400–403.
Schalekamp, F., & Zuylen, A. (2009). Rank aggregation: Together we’re strong. In Proceedings of the 11th Workshop on Algorithm Engineering and Experiments (pp. 38–51). Philadelphia: SIAM.
Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., et al. (2002). Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 8(1), 68–74.
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 3.
West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., et al. (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences of USA, 98(20), 11462–11467.
Acknowledgements
This work was funded in part by the German federal ministry of education and research (BMBF) within the framework of the program of medical genome research (PaCa-Net; Project ID PKB-01GS08) and the framework GERONTOSYS 2 (Forschungskern SyStaR, Project ID 0315894A), and by the German Science Foundation (SFB 1074, Project Z1) and the International Graduate School in Molecular Medicine at Ulm University (GSC270). The responsibility for the content lies exclusively with the authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Burkovski, A., Lausser, L., Kraus, J.M., Kestler, H.A. (2014). Rank Aggregation for Candidate Gene Identification. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds) Data Analysis, Machine Learning and Knowledge Discovery. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-01595-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-01595-8_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01594-1
Online ISBN: 978-3-319-01595-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)