[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Implementation of Intrusive Polynomial Chaos in CFD Codes and Application to 3D Navier-Stokes

  • Chapter
  • First Online:
Uncertainty Quantification in Computational Fluid Dynamics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 92))

Abstract

In present day, the technology reduction of product development costs and design cycle time are essential ingredients in a competitive industrial environment. E.g. in aeronautics the objectives set by the EU are to reduce aircraft development costs by resp. 20 and 50 % in the short and long term. Virtual prototyping and advanced design optimization, which largely depend on the predictive performance and the reliability of simulation software, are essential tools to reach this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Wiener. The Homogeneous Chaos. Am. J. Math., 60:897–936, 1938.

    Article  MathSciNet  Google Scholar 

  2. D. Xiu and G.E. Karniadakis. Modeling uncertainty in flow simulations via generalized polynomial chaos. JCP, 187:137–167, 2003.

    MathSciNet  MATH  Google Scholar 

  3. D. Lucor, D. Xiu, C.-H. Su, and G.E. Karniadakis. Predictability and uncertainty in CFD. Int. J. Numer. Meth. Fluids, 43:483–505, 2003.

    MathSciNet  MATH  Google Scholar 

  4. O. Le Maitre, O. Knio, H. Najm, and R. Ghanem. A stochastic projection method for fluid flow i. basic formulation. J. Comput. Phys., 173:481–511, 2001.

    Google Scholar 

  5. L. Mathelin, M. Hussaini, and T. Zang. Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms, 38:209–236, 2005.

    MathSciNet  MATH  Google Scholar 

  6. R.W. Walters and L. Huyse. Uncertainty analysis for fluid mechanics with applications. ICASE Rep. no. 2002-1, 2002.

    Google Scholar 

  7. Witteveen J.A.S. and Bijl H. Efficient Quantification Of The Effect Of Uncertainties In Advection-Diffusion Problems Using Polynomial Chaos. Numerical Heat Transfer, Part B, 53:437–465, 2008.

    Article  Google Scholar 

  8. D. Xiu and G.E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24:619–644, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Karhunen. Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci. Fennicae, 34:1–7, 1946.

    Google Scholar 

  10. M. Loève. Fonctions aleatoires du seconde ordre. Processus Stochastiques et Movement Brownien, 1948. Ed. P. Levy, Paris.

    Google Scholar 

  11. Xiu D. FastNumericalMethods for Stochastic Computations: A Review. Commun. Comput. Phys., 5:242–272, 2009.

    MathSciNet  Google Scholar 

  12. C. Lacor and S. Smirnov. Uncertainty Propagation in the Solution of Compressible Navier-Stokes Equations using Polynomial Chaos Decomposition. RTO-MP-AVT-147 Computational Uncertainty in Military Vehicle Design, 2007. Athens.

    Google Scholar 

  13. C. Lacor and S. Smirnov. Non-Deterministic Compressible Navier-Stokes Simulations using Polynomial Chaos. Proc. ECCOMAS Conf., 2008. Venice.

    Google Scholar 

  14. C. Dinescu, S. Smirnov, Ch. Hirsch, and C. Lacor. Assessment of intrusive and non-intrusive non-deterministic cfd methodologies based on polynomial chaos expansions. Int. J. Engineering Systems Modelling and Simulation, 2:87–98, 2010.

    Article  Google Scholar 

  15. G. Onorato, G.J.A. Loeven, G. Ghorbaniasl, H. Bijl, and C. Lacor. Comparison of intrusive and non-intrusive polynomial chaos methods for CFD applications in aeronautics. Proc. ECCOMAS CFD Conf., 2010. Lisbon, June 2010.

    Google Scholar 

  16. O. Le Maitre, M. Reagan, H. Najm, R. Ghanem, and O. Knio. A stochastic projection method for fluid flow ii. random process. J. Comput. Phys., 181:9–44, 2002.

    Google Scholar 

  17. F. Nobile, R. Tempone, and C.G. Webster. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data. SIAM J. Numer. Analysis, 46: 2309–2345, 2009.

    Article  MathSciNet  Google Scholar 

  18. M. Berveiller, B. Sudret, and M. Lemaire. Stochastic finite element: a non-intrusive approach by regression. Rev. Europ enne M canique Num rique, 15:81–92, 2006.

    Article  MATH  Google Scholar 

  19. S. Hosder, R.W. Walters, and R. Perez. A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations. 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.

    Google Scholar 

  20. S. Hosder, R.W. Walters, and M. Balch. Efficient uncertainty quantification applied to the aeroelastic analysis of a transonic wing. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.

    Google Scholar 

  21. C. Hu and B.D. Youn. Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct Multidisc Optim, 43:419–442, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Ghanem. Hybrid stochastic finite elements and generalized monte carlo simulation. ASME J. Appl. Mech., 65:1004–1009, 1998.

    Article  Google Scholar 

  23. Field R.V. Numerical methods to estimate the coefficients of the polynomial chaos expansion. In Proc. 15th ASCE Engineering mechanics Conference, 2002.

    Google Scholar 

  24. D. Ghiocel and R. Ghanem. Stochastic finite-element analysis of seismic soil-structure interaction. J. Eng. mech., 128:66–77, 2002.

    Article  Google Scholar 

  25. S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov Math Dokl, 4:240–243, 1963.

    Google Scholar 

  26. Gerstner T. and Griebel M. Dimension-adaptive tensor-product quadrature. Computing, 71(7):65–87, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma X. and Zabaras N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys., 228:3084–3113, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  28. Rahman S. and Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 19:393-408, 2004.

    Article  Google Scholar 

  29. Xu H. and Rahman S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int. J. Numer. Meth. Engng., 61:1992-2019, 2004.

    Article  MATH  Google Scholar 

  30. Mathelin L., Hussaini M.Y., Zang T.A., and Bataille F. Uncertainty propagation for turbulent, compressible nozzle flow using stochastic methods,. AIAA J, 42:1669–1676, 2004.

    Article  Google Scholar 

  31. Alekseev A. K., Navon I. M., and Zelentsov M. E. The estimation of functional uncertainty using polynomial chaos and adjoint equations. Int. J. Numer. Meth. Fluids, 67:328–341, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  32. W.L. Oberkampf, T.G. Trucano, and Ch. Hirsch. Verification, Validation, and Predictive Capability in Computational Engineering and Physics. Paper presented at FOUNDATIONS 02, Foundations for Verification and Validation in the 21st Century Workshop, USA, 2002.

    Google Scholar 

  33. D. Xiu and D.M. Tartakovsky. Numerical Methods for Differential Equations in Random Domains. SIAM Journal on Scientific Computation, 28:1167–1185, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  34. Parussini L. and Pediroda V. Investigation of Multi Geometric Uncertainties by Different Polynomial Chaos Methodologies Using a Fictitious Domain Solver. Computer Modeling in Engineering and Sciences, 23:29-52, 2008.

    MathSciNet  MATH  Google Scholar 

  35. Parussini L. Fictitious Domain Approach Via Lagrange Multipliers with Least Squares Spectral Element Method. Journal of Scientific Computing, 37:316-335, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  36. Perez R. and Walters R. An Implicit Polynomial Chaos Formulation for the Euler Equations. AIAA 2005–1406, 2005.

    Google Scholar 

  37. Perez R. Uncertainty Analysis of Computational Fluid Dynamics Via Polynomial Chaos. PhD Thesis, Virginia Polytechnic Institute and State University, 2008.

    Google Scholar 

  38. A. Doostan and H. Owhadi. A non-adapted sparse approximation of PDEs with stochastic inputs. Journal of Computational Physics, 230:3015–3034, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Raets. Application of Polynomial Chaos to CFD. Master Thesis, Research Group Fluid Mechanics and Thermodynamics, VUB, 2007.

    Google Scholar 

  40. Hirsch Ch. and Dinescu C. Uncertainty Quantification and Non-deterministic Methodologies for CFD based Design - the NODESIM-CFD Project. Proceedings 7th European Symposium on Aerothermodynamics, SP-692, 2011.

    Google Scholar 

  41. J. Dunham. CFD validation for propulsion system components. AGARD-AR-355, 1998.

    Google Scholar 

  42. B. Tartinville and Ch. Hirsch. Rotor37 in FLOMANIA - A European Initiative on Flow Physics Modelling. Notes in Numerical Fluid Mechanics and Multidisciplinary Design, Springer, 2006. Vol. 94, pp. 193–202.

    Article  Google Scholar 

  43. G.J.A. Loeven, J.A.S. Witteveen, and H. Bijl. Probabilistic Collocation: An Efficient Non-Intrusive Apporach For Arbitrarily Distributed Parametric Uncertainties. AIAA paper 2007–317, 2007. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

    Google Scholar 

  44. X. Wan and G.E. Karniadakis. An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations. JCP, 209:617–642, 2005.

    MathSciNet  MATH  Google Scholar 

  45. O. Le Maitre, O.M. Knio, H.N. Najm, and R.G. Ghanem. Uncertainty propagation using wiener-haar expansions. J. Comput. Phys., 197:28–57, 2004.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Lacor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lacor, C., Dinescu, C., Hirsch, C., Smirnov, S. (2013). Implementation of Intrusive Polynomial Chaos in CFD Codes and Application to 3D Navier-Stokes. In: Bijl, H., Lucor, D., Mishra, S., Schwab, C. (eds) Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-00885-1_5

Download citation

Publish with us

Policies and ethics