Abstract
We propose a robust estimator of geometric quantities such as normals, curvature directions and sharp features for 3D digital surfaces. This estimator only depends on the digitisation gridstep and is defined using a digital version of the Voronoi Covariance Measure, which exploits the robust geometric information contained in the Voronoi cells. It has been proved in [1] that the Voronoi Covariance Measure is resilient to Hausdorff noise. Our main theorem explicits the conditions under which this estimator is multigrid convergent for digital data. Moreover, we determine what are the parameters which maximise the convergence speed of this estimator, when the normal vector is sought. Numerical experiments show that the digital VCM estimator reliably estimates normals, curvature directions and sharp features of 3D noisy digital shapes.
This research has been supported in part by the ANR grants DigitalSnow ANR-11-BS02-009, KIDICO ANR-2010-BLAN-0205 and TopData ANR-13-BS01-0008.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Mérigot, Q., Ovsjanikov, M., Guibas, L.: Voronoi-based curvature and feature estimation from point clouds. IEEE Transactions on Visualization and Computer Graphics 17(6), 743–756 (2011)
de Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recognition (2008)
Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with a convergent bounded error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg (2011)
Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recognition (2009)
Roussillon, T., Lachaud, J.-O.: Accurate curvature estimation along digital contours with maximal digital circular arcs. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 43–55. Springer, Heidelberg (2011)
Fourey, S., Malgouyres, R.: Normals and curvature estimation for digital surfaces based on convolutions. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 287–298. Springer, Heidelberg (2008)
Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013)
Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design 22(2), 121–146 (2005)
Amenta, N., Bern, M.: Surface reconstruction by voronoi filtering. Discrete & Computational Geometry 22(4), 481–504 (1999)
Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Symposium on Geometry Processing (2007)
Davis, C.: The rotation of eigenvectors by a perturbation. Journal of Mathematical Analysis and Applications (1963)
Mérigot, Q.: Détection de structure géométrique dans les nuages de points. PhD thesis, Université Nice Sophia Antipolis (December 2009)
Morvan, J.M., Thibert, B.: Approximation of the normal vector field and the area of a smooth surface. Discrete & Computational Geometry 32(3), 383–400 (2004)
DGtal: Digital geometry tools and algorithms library, http://libdgtal.org
Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design 22(2), 121–146 (2005)
Weyl, H.: On the volume of tubes. American Journal of Mathematics, 461–472 (1939)
Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93(3), 418–491 (1959)
Cuel, L., Lachaud, J.-O., Thibert, B.: Voronoi-based geometry estimator for 3D digital surfaces. Technical report hal-00990169 (May 2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cuel, L., Lachaud, JO., Thibert, B. (2014). Voronoi-Based Geometry Estimator for 3D Digital Surfaces. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds) Discrete Geometry for Computer Imagery. DGCI 2014. Lecture Notes in Computer Science, vol 8668. Springer, Cham. https://doi.org/10.1007/978-3-319-09955-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-09955-2_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09954-5
Online ISBN: 978-3-319-09955-2
eBook Packages: Computer ScienceComputer Science (R0)