[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation

  • Conference paper
Advances in Modelling and Control of Non-integer-Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 320))

Abstract

This paper describes reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. Additional information for the considered inverse problem was given by the temperature measurements at selected points of the domain. The direct problem was solved by using the finite difference method. To minimize functional defining the error of approximate solution the Fibonacci search algorithm was used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ardakani, M., Khodadad, M.: Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm. Inverse Probl. Sci. Eng. 17, 855–870 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Battaglia, J.L., Cois, O., Puigsegur, L., Oustaloup, A.: Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transfer 44, 2671–2680 (2001)

    Article  MATH  Google Scholar 

  3. Borukhov, V.T., Tsurko, V.A., Zayats, G.M.: The functional identification approach for numerical reconstruction of the temperature-dependent thermal-conductivity coefficient. Int. J. Heat Mass Transfer 52, 232–238 (2009)

    Article  MATH  Google Scholar 

  4. Brociek, R.: Implicite finite difference metod for time fractional diffusion equations with mixed boundary conditions. Zesz. Nauk. PŚ., Mat. Stosow. 4 (in press 2014)

    Google Scholar 

  5. Carpinteri, A., Mainardi, F.: Fractal and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Book  Google Scholar 

  6. Chang, C.L., Chang, M.: Inverse estimation of the thermal conductivity in a one-dimensional domain by Taylor series approach. Heat Transfer Engineering 29, 830–838 (2008)

    Article  Google Scholar 

  7. Czél, B., Gróf, G.: Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes. Int. J. Heat Mass Transfer 55, 4254–4263 (2012)

    Article  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Divo, E., Kassab, A., Rodriguez, F.: Characterization of space dependent thermal conductivity with a BEM-based genetic algorithm. Numer. Heat Transfer A(37), 845–875 (2000)

    Google Scholar 

  10. Dou, F., Hon, Y.: Numerical computation for backward time-fractional diffusion equation. Eng. Anal. Bound. Elem. 40, 138–146 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gabano, J.D., Poinot, T.: Fractional modelling and identification of thermal systems. Signal Processing 91, 531–541 (2011)

    Article  MATH  Google Scholar 

  12. Gabano, J.D., Poinot, T.: Estimation of thermal parameters using fractional modelling. Signal Processing 91, 938–948 (2011)

    Article  MATH  Google Scholar 

  13. Imani, A., Ranjbar, A.A., Esmkhani, M.: Simultaneous estimation of temperature-dependent thermal conductivity and heat capacity based on modified genetic algorithm. Inverse Probl. Sci. Eng. 14, 767–783 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kanca, F., Ismailov, M.: The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data. Inverse Probl. Sci. Eng. 20, 463–476 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Klafter, J., Lim, S., Metzler, R.: Fractional dynamics. Resent advances. World Scientific, New Jersey (2012)

    MATH  Google Scholar 

  16. Kusiak, J., Danielewska-Tułecka, A., Oprocha, P.: Optimization. PWN, Warszawa (2009) (in Polish)

    Google Scholar 

  17. Majchrzak, E., Mendakiewicz, J., Piasecka-Belkhayat, A.: Algorithm of the mould thermal parameters identification in the system casting–mould–environment. J. Mater. Proc. Tech. 164-165, 1544–1549 (2008)

    Article  Google Scholar 

  18. Mitkowski, W., Kacprzyk, J., Baranowski, J.: Advances in the Theory and Applications of Non-integer Order Systems. Springer Inter. Publ., Cham (2013)

    Book  MATH  Google Scholar 

  19. Mitkowski, W., Obrączka, A.: Simple identification of fractional differential equation. Solid State Phenomena 180, 331–338 (2012)

    Article  Google Scholar 

  20. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53, 1492–1501 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Murio, D.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Murio, D.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl. Sci. Eng. 17, 229–243 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Murio, D., Mejia, C.: Generalized time fractional IHCP with Caputo fractional derivatives. J. Phys. Conf. Ser. 135, 12074 (2008)

    Article  Google Scholar 

  25. Obrączka, A., Kowalski, J.: Modeling of the heat distribution in ceramic materials by using the fractional differential equations. In: Szczygieł, M. (ed.) Proceedings of the XV Jubilee Symposium, Basic Problems in Power Electronics, Electromechanics and Mechatronics, PPEEm 2012, Gliwice, pp. 132–133 (2012) (in Polish)

    Google Scholar 

  26. Obrączka, A., Mitkowski, W.: The comparison of parameter identification methods for fractional partial differential equation. Solid State Phenomena 210, 265–270 (2014)

    Article  Google Scholar 

  27. Orain, S., Scudeller, Y., Garcia, S., Brousse, T.: Use of genetic algorithms for the simultaneous estimation of thin film thermal conductivity and contact resistances. Int. J. Heat Mass Transfer 44, 3973–3984 (2001)

    Article  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  29. Poinot, T., Trigeassou, J.C.: Identification of fractional systems using an output-error technique. Nonlinear Dynamics 38, 133–154 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rabsztyn, S., Słota, D., Wituła, R.: Gamma and Beta Functions, vol. 1. Wyd. Pol. Śl, Gliwice (2012) (in Polish)

    Google Scholar 

  31. Szczygieł, I.: Analysis of Inverse Heat Convection Problems. Zesz. Nauk. PŚ., Ener. 140, 1–141 (2005) (in Polish)

    Google Scholar 

  32. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49, 926–935 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Brociek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brociek, R., Słota, D., Wituła, R. (2015). Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-09900-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09900-2_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09899-9

  • Online ISBN: 978-3-319-09900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics