Abstract
Semantic networks inspired by semantic information processing by the brain frequently do not improve the results of text classification. This counterintuitive fact is explained here by the multiple inheritance problem, which corrupts real-world knowledge representation attempts. After a review of early work on the use of semantic networks in text classification, our own heuristic solution to the problem is presented. Significance testing is used to contrast results obtained with pruned and entire semantic networks applied to medical text classification problems. The algorithm has been motivated by the process of spreading neural activation in the brain. The semantic network activation is propagated throughout the network until no more changes to the text representation are detected. Solving the multiple inheritance problem for the purpose of text classification is similar to embedding inhibition in the spreading activation process – a crucial mechanism for a healthy brain.
Authors would like to thank Drs. John P. Pestian, Imre Solti, Lawrence Hunter, K. Bretonnel Cohen, Karen M. Stannard, Guergana K. Savova, and Alan R. Aronson for their interest in this article.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lamb, S.M.: Pathways of the Brain: The Neurocognitive Basis of Language. John Benjamins Publishing Company (1999)
Russell, S.J., Norvig, P., Davis, E.: Artificial intelligence: a modern approach. Prentice Hall (2010)
Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text categorization. In: Proc. of the 14th ICML, pp. 143–151. Morgan Kaufmann (1997)
Scott, S., Matwin, S.: Feature engineering for text classification. In: ICML 1999, pp. 379–388 (1999)
Fellbaum, C.: WordNet. Wiley (1999)
Duch, W., Matykiewicz, P., Pestian, J.: Neurolinguistic approach to natural language processing with applications to medical text analysis. Neural Networks 21(10), 1500–1510 (2008)
Billingsley, R.L., McAndrews, M.P., Crawley, A.P., Mikulis, D.J.: Functional MRI of phonological and semantic processing in temporal lobe epilepsy. Brain 124(6), 1218–1227 (2001)
Tivarus, M.E., Ibinson, J.W., Hillier, A., Schmalbrock, P., Beversdorf, D.Q.: An fMRI study of semantic priming: modulation of brain activity by varying semantic distances. Cogn. Behav. Neurol. 19(4), 194–201 (2006)
Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., Capelle, L.: New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(4), 797–810 (2005)
Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity: Measuring the relatedness of concepts. In: Demonstration Papers at HLT-NAACL, pp. 38–41. ACL (2004)
Scott, S., Matwin, S.: Text classification using WordNet hypernyms. In: Use of WordNet in Natural Language Processing Systems: Proc. of the Conference, pp. 38–44. ACL (1998)
Hotho, A., Staab, S., Stumme, G.: Wordnet improves text document clustering. In: Proc. of the 26th Annual International ACM SIGIR Conf. on Semantic Web Workshop, pp. 541–544 (2003)
Sedding, J., Kazakov, D.: WordNet-based text document clustering. In: COLING 3rd Workshop on Robust Methods in Analysis of Natural Language Data, COLING, pp. 104–113 (2004)
Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.: Word sense disambiguation for exploiting hierarchical thesauri in text classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 181–192. Springer, Heidelberg (2005)
Yoo, I., Hu, X.: A comprehensive comparison study of document clustering for a biomedical digital library MEDLINE. In: Proc. of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 220–229. IEEE (2006)
Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck using wikipedia: Enhancing text categorization with encyclopedic knowledge. In: Proceedings of the 21st National Conference on AI, pp. 1301–1306 (2006)
Bloehdorn, S., Hotho, A.: Boosting for text classification with semantic features. In: Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS (LNAI), vol. 3932, pp. 149–166. Springer, Heidelberg (2006)
Khader, P., Knoth, K., Burke, M., Ranganath, C., Bien, S., Rosler, F.: Topography and dynamics of associative long-term memory retrieval in humans. Journal of Cognitive Neuroscience 19(3), 493–512 (2007)
Leeson, V.C., Simpson, A., McKenna, P.J., Laws, K.R.: Executive inhibition and semantic association in schizophrenia. Schizophrenia Research 74(1), 61–67 (2005)
Crevier, D.: AI: The tumultuous history of the search for artificial intelligence. Basic Books (1993)
Hersh, W., Hickam, D.: Use of a multi-application computer workstation in a clinical setting. Bulletin of the Medical Library Association 82(4), 382–389 (1994)
Funk, M.E., Reid, C.A.: Indexing consistency in MEDLINE. Bulletin of the Medical Library Association 71(2), 176–183 (1983)
Yang, Y., Pedersen, J.: A comparative study on feature selection in text categorization. In: Fisher, D. (ed.) Proc. of the 14th ICML, pp. 412–420. Morgan Kaufmann (1997)
Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)
Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Matykiewicz, P., Duch, W. (2014). Multiple Inheritance Problem in Semantic Spreading Activation Networks. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-09891-3_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09890-6
Online ISBN: 978-3-319-09891-3
eBook Packages: Computer ScienceComputer Science (R0)