[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiple Inheritance Problem in Semantic Spreading Activation Networks

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

Abstract

Semantic networks inspired by semantic information processing by the brain frequently do not improve the results of text classification. This counterintuitive fact is explained here by the multiple inheritance problem, which corrupts real-world knowledge representation attempts. After a review of early work on the use of semantic networks in text classification, our own heuristic solution to the problem is presented. Significance testing is used to contrast results obtained with pruned and entire semantic networks applied to medical text classification problems. The algorithm has been motivated by the process of spreading neural activation in the brain. The semantic network activation is propagated throughout the network until no more changes to the text representation are detected. Solving the multiple inheritance problem for the purpose of text classification is similar to embedding inhibition in the spreading activation process – a crucial mechanism for a healthy brain.

Authors would like to thank Drs. John P. Pestian, Imre Solti, Lawrence Hunter, K. Bretonnel Cohen, Karen M. Stannard, Guergana K. Savova, and Alan R. Aronson for their interest in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lamb, S.M.: Pathways of the Brain: The Neurocognitive Basis of Language. John Benjamins Publishing Company (1999)

    Google Scholar 

  2. Russell, S.J., Norvig, P., Davis, E.: Artificial intelligence: a modern approach. Prentice Hall (2010)

    Google Scholar 

  3. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text categorization. In: Proc. of the 14th ICML, pp. 143–151. Morgan Kaufmann (1997)

    Google Scholar 

  4. Scott, S., Matwin, S.: Feature engineering for text classification. In: ICML 1999, pp. 379–388 (1999)

    Google Scholar 

  5. Fellbaum, C.: WordNet. Wiley (1999)

    Google Scholar 

  6. Duch, W., Matykiewicz, P., Pestian, J.: Neurolinguistic approach to natural language processing with applications to medical text analysis. Neural Networks 21(10), 1500–1510 (2008)

    Article  Google Scholar 

  7. Billingsley, R.L., McAndrews, M.P., Crawley, A.P., Mikulis, D.J.: Functional MRI of phonological and semantic processing in temporal lobe epilepsy. Brain 124(6), 1218–1227 (2001)

    Article  Google Scholar 

  8. Tivarus, M.E., Ibinson, J.W., Hillier, A., Schmalbrock, P., Beversdorf, D.Q.: An fMRI study of semantic priming: modulation of brain activity by varying semantic distances. Cogn. Behav. Neurol. 19(4), 194–201 (2006)

    Google Scholar 

  9. Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., Capelle, L.: New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(4), 797–810 (2005)

    Article  Google Scholar 

  10. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity: Measuring the relatedness of concepts. In: Demonstration Papers at HLT-NAACL, pp. 38–41. ACL (2004)

    Google Scholar 

  11. Scott, S., Matwin, S.: Text classification using WordNet hypernyms. In: Use of WordNet in Natural Language Processing Systems: Proc. of the Conference, pp. 38–44. ACL (1998)

    Google Scholar 

  12. Hotho, A., Staab, S., Stumme, G.: Wordnet improves text document clustering. In: Proc. of the 26th Annual International ACM SIGIR Conf. on Semantic Web Workshop, pp. 541–544 (2003)

    Google Scholar 

  13. Sedding, J., Kazakov, D.: WordNet-based text document clustering. In: COLING 3rd Workshop on Robust Methods in Analysis of Natural Language Data, COLING, pp. 104–113 (2004)

    Google Scholar 

  14. Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.: Word sense disambiguation for exploiting hierarchical thesauri in text classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 181–192. Springer, Heidelberg (2005)

    Google Scholar 

  15. Yoo, I., Hu, X.: A comprehensive comparison study of document clustering for a biomedical digital library MEDLINE. In: Proc. of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 220–229. IEEE (2006)

    Google Scholar 

  16. Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck using wikipedia: Enhancing text categorization with encyclopedic knowledge. In: Proceedings of the 21st National Conference on AI, pp. 1301–1306 (2006)

    Google Scholar 

  17. Bloehdorn, S., Hotho, A.: Boosting for text classification with semantic features. In: Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS (LNAI), vol. 3932, pp. 149–166. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Khader, P., Knoth, K., Burke, M., Ranganath, C., Bien, S., Rosler, F.: Topography and dynamics of associative long-term memory retrieval in humans. Journal of Cognitive Neuroscience 19(3), 493–512 (2007)

    Article  Google Scholar 

  19. Leeson, V.C., Simpson, A., McKenna, P.J., Laws, K.R.: Executive inhibition and semantic association in schizophrenia. Schizophrenia Research 74(1), 61–67 (2005)

    Article  Google Scholar 

  20. Crevier, D.: AI: The tumultuous history of the search for artificial intelligence. Basic Books (1993)

    Google Scholar 

  21. Hersh, W., Hickam, D.: Use of a multi-application computer workstation in a clinical setting. Bulletin of the Medical Library Association 82(4), 382–389 (1994)

    Google Scholar 

  22. Funk, M.E., Reid, C.A.: Indexing consistency in MEDLINE. Bulletin of the Medical Library Association 71(2), 176–183 (1983)

    Google Scholar 

  23. Yang, Y., Pedersen, J.: A comparative study on feature selection in text categorization. In: Fisher, D. (ed.) Proc. of the 14th ICML, pp. 412–420. Morgan Kaufmann (1997)

    Google Scholar 

  24. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    Article  Google Scholar 

  25. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Google Scholar 

  26. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Matykiewicz, P., Duch, W. (2014). Multiple Inheritance Problem in Semantic Spreading Activation Networks. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics