[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Brain Informatics Research Recommendation System

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

Abstract

Finding and learning related research is a necessary work in Brain Informatics studies. However, the keyword-based search on brain and mental big data center often brings a large amount of unnecessary results. It is very difficult to find needed research from those results for researchers. This paper proposes a Brain Informatics research recommendation system based on the Data-Brain and BI provenances. By choosing interest aspects from the Data-Brain and applying the unification of search and reasoning based on Data-Brain interests, the more accurate search can be realized to find really related literatures for supporting systematic Brain Informatics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, J.H., Zhong, N.: Data-Brain Modeling Based on Brain Informatics Methodology. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008, pp. 41–47. IEEE Computer Society, Sydney (2008)

    Google Scholar 

  2. Chen, J.H., Zhong, N.: Data-Brain modeling for systematic Brain Informatics. In: Zhong, N., Li, K., Lu, S., Chen, L. (eds.) BI 2009. LNCS, vol. 5819, pp. 182–193. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Chen, J.H., Zhong, N., Liang, P.P.: Data-Brain Driven Systematic Human Brain Data Analysis: A Case Study in Numerical Inductive Reasoning Centric Investigation. Cognitive Systems Research 15-16, 17–32 (2012)

    Google Scholar 

  4. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-Science. Sigmod Record 34(3), 31–36 (2005)

    Article  Google Scholar 

  5. Zeng, Y., Zhou, E.Z., Wang, Y., Ren, X., Qin, Y.L., Huang, Z.S., Zhong, N.: Research interests: their dynamics, structuresand applications in unifying search and reasoning. J. Intell. Inf. Syst. 37(2011), 65–88 (2011)

    Article  Google Scholar 

  6. Zeng, Y., Yao, Y.Y., Zhong, N.: Dblp-sse: A dblp search support engine. In: Proceedings of the 2009 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2009, pp. 626–630 (2009)

    Google Scholar 

  7. Zeng, Y., Zhong, N., Wang, Y., Qin, Y.L., Huang, Z.S., Zhou, H.Y., Yao, Y.Y., Harmelen, F.V.: User-centric query refinement and processing using granularity based strategies. Knowledge and Information Systems 27(3), 419–450 (2011)

    Article  Google Scholar 

  8. Zeng, Y., Zhou, E.Z., Qin, Y.L., Zhong, N.: Research interests: Their dynamics, structures and applications in web search refinement. In: Proceeding of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 639–646 (2010)

    Google Scholar 

  9. Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Qin, Y., Li, K., Wah, B.W.: Web Intelligence Meets Brain Informatics. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) Web Intelligence Meets Brain Informatics. LNCS (LNAI), vol. 4845, pp. 1–31. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Zhong, N.: Ways to develop human-level Web Intelligence: A Brain Informatics perspective. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 27–36. Springer, Heidelberg (2007)

    Google Scholar 

  11. Zhong, N., Chen, J.H.: Constructing a New-style Conceptual Model of Brain Data for Systematic Brain Informatics. IEEE Transactions on Knowledge and Data Engineering 24(12), 2127–2142 (2012)

    Article  MathSciNet  Google Scholar 

  12. Zhong, N., Chen, J.H.: Constructing a New-style Conceptual Model of Bain Data for Systematic Brain Informatics. 2011 IEEE, 1041–4347 (November 26, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Han, J., Chen, J., Zhong, H., Zhong, N. (2014). A Brain Informatics Research Recommendation System. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics