Abstract
This paper presents an empirical investigation of sentence position relevance in a corpus of news texts for generating abstractive multi-document summaries. Differently from previous work, we propose to use text-summary alignment information to compute sentence relevance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aleixo, P., Pardo, T.A.S.: CSTNews: Um Córpus de Textos Jornalísticos Anotados segundo a Teoria Discursiva Multidocumento CST (Cross-document Structure Theory). ICMC-USP Technical Report N. 326, p.12 (2008)
Baxendale, P.B.: Machine-made index for technical literature – an experiment. IBM Journal, 354–361 (1958)
Bick, E.: The Parsing System Palavras - Automatic Grammatical Analysis of Portuguese in a Constraint Grammar Famework. PhD Thesis. Aarhus University Press (2000)
Camargo, R.T.: Investigação de Estratégias de Sumarização Humana Multidocumento. MSc Dissertation. Departamento de Letras, Universidade Federal de São Carlos, p.133 (2013)
Cardoso, P.C.F., Maziero, E.G., Jorge, M.L.C., Seno, E.M.R., Di Felippo, A., Rino, L.H.M., Nunes, M.G.V., Pardo, T.A.S.: CSTNews - A Discourse-Annotated Corpus for Single and Multi-Document Summarization of News Texts in Brazilian Portuguese. In: Proceedings of the 3rd RST Brazilian Meeting, pp. 88–105 (2011)
Carletta, J.: Assessing Agreement on Classification Tasks: The Kappa Statistic. Computational Linguistics 22(2), 249–254 (1996)
Castro Jorge, M.L.R., Pardo, T.A.S.: Experiments with CST-based Multidocument Summarization. In: Proceedings of the ACL Workshop TextGraphs-5: Graph-based Methods for Natural Language Processing, pp. 74–82 (2010)
Edmundson, H.P.: New methods in automatic extracting. Journal of the ACM 16(2), 264–285 (1969)
Katragadda, R., Pingali, P., Varma, V.: Sentence Position revisited: A robust light-weight Update Summarization ‘baseline’ Algorithm. In: Proceedings of the Third International Cross Lingual Information Access Workshop, pp. 46–52 (2009)
Lin, C.Y., Hovy, E.: Identifying Topics by Position. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 283–290 (1997)
Mani, I.: Automatic Summarization. John Benjamins Publishing Co., Amsterdam (2001)
Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: A Framework for the Analysis of Texts. ISI Reprint Series ISI/RS-87-190. Information Sciences Institute (1987)
McKeown, K., Radev, D.R.: Generating summaries of multiple news articles. In: Proceedings of the 18th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 74–82 (1995)
Nenkova, A., McKeown, K.: Automatic Summarization. Foundations and Trends in Information Retrieval Series. Now Publishers Inc. (2011)
Nenkova, A., Passonneau, R., McKeown, K.: The pyramid method: Incorporating human content selection variation in summarization evaluation. ACM Transactions on Speech and Language Processing 4(2), 1–23 (2007)
Radev, D.R.: A common theory of information fusion from multiple text sources, step one: Cross-document structure. In: Proceedings of 1st ACL SIGDIAL Workshop on Discourse and Dialogue, pp. 74–83 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Nóbrega, F.A.A., Agostini, V., Camargo, R.T., Di Felippo, A., Pardo, T.A.S. (2014). Alignment-Based Sentence Position Policy in a News Corpus for Multi-document Summarization. In: Baptista, J., Mamede, N., Candeias, S., Paraboni, I., Pardo, T.A.S., Volpe Nunes, M.d.G. (eds) Computational Processing of the Portuguese Language. PROPOR 2014. Lecture Notes in Computer Science(), vol 8775. Springer, Cham. https://doi.org/10.1007/978-3-319-09761-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-09761-9_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09760-2
Online ISBN: 978-3-319-09761-9
eBook Packages: Computer ScienceComputer Science (R0)