[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Alignment-Based Sentence Position Policy in a News Corpus for Multi-document Summarization

  • Conference paper
Computational Processing of the Portuguese Language (PROPOR 2014)

Abstract

This paper presents an empirical investigation of sentence position relevance in a corpus of news texts for generating abstractive multi-document summaries. Differently from previous work, we propose to use text-summary alignment information to compute sentence relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleixo, P., Pardo, T.A.S.: CSTNews: Um Córpus de Textos Jornalísticos Anotados segundo a Teoria Discursiva Multidocumento CST (Cross-document Structure Theory). ICMC-USP Technical Report N. 326, p.12 (2008)

    Google Scholar 

  2. Baxendale, P.B.: Machine-made index for technical literature – an experiment. IBM Journal, 354–361 (1958)

    Google Scholar 

  3. Bick, E.: The Parsing System Palavras - Automatic Grammatical Analysis of Portuguese in a Constraint Grammar Famework. PhD Thesis. Aarhus University Press (2000)

    Google Scholar 

  4. Camargo, R.T.: Investigação de Estratégias de Sumarização Humana Multidocumento. MSc Dissertation. Departamento de Letras, Universidade Federal de São Carlos, p.133 (2013)

    Google Scholar 

  5. Cardoso, P.C.F., Maziero, E.G., Jorge, M.L.C., Seno, E.M.R., Di Felippo, A., Rino, L.H.M., Nunes, M.G.V., Pardo, T.A.S.: CSTNews - A Discourse-Annotated Corpus for Single and Multi-Document Summarization of News Texts in Brazilian Portuguese. In: Proceedings of the 3rd RST Brazilian Meeting, pp. 88–105 (2011)

    Google Scholar 

  6. Carletta, J.: Assessing Agreement on Classification Tasks: The Kappa Statistic. Computational Linguistics 22(2), 249–254 (1996)

    Google Scholar 

  7. Castro Jorge, M.L.R., Pardo, T.A.S.: Experiments with CST-based Multidocument Summarization. In: Proceedings of the ACL Workshop TextGraphs-5: Graph-based Methods for Natural Language Processing, pp. 74–82 (2010)

    Google Scholar 

  8. Edmundson, H.P.: New methods in automatic extracting. Journal of the ACM 16(2), 264–285 (1969)

    Article  MATH  Google Scholar 

  9. Katragadda, R., Pingali, P., Varma, V.: Sentence Position revisited: A robust light-weight Update Summarization ‘baseline’ Algorithm. In: Proceedings of the Third International Cross Lingual Information Access Workshop, pp. 46–52 (2009)

    Google Scholar 

  10. Lin, C.Y., Hovy, E.: Identifying Topics by Position. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 283–290 (1997)

    Google Scholar 

  11. Mani, I.: Automatic Summarization. John Benjamins Publishing Co., Amsterdam (2001)

    Google Scholar 

  12. Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: A Framework for the Analysis of Texts. ISI Reprint Series ISI/RS-87-190. Information Sciences Institute (1987)

    Google Scholar 

  13. McKeown, K., Radev, D.R.: Generating summaries of multiple news articles. In: Proceedings of the 18th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 74–82 (1995)

    Google Scholar 

  14. Nenkova, A., McKeown, K.: Automatic Summarization. Foundations and Trends in Information Retrieval Series. Now Publishers Inc. (2011)

    Google Scholar 

  15. Nenkova, A., Passonneau, R., McKeown, K.: The pyramid method: Incorporating human content selection variation in summarization evaluation. ACM Transactions on Speech and Language Processing 4(2), 1–23 (2007)

    Article  Google Scholar 

  16. Radev, D.R.: A common theory of information fusion from multiple text sources, step one: Cross-document structure. In: Proceedings of 1st ACL SIGDIAL Workshop on Discourse and Dialogue, pp. 74–83 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nóbrega, F.A.A., Agostini, V., Camargo, R.T., Di Felippo, A., Pardo, T.A.S. (2014). Alignment-Based Sentence Position Policy in a News Corpus for Multi-document Summarization. In: Baptista, J., Mamede, N., Candeias, S., Paraboni, I., Pardo, T.A.S., Volpe Nunes, M.d.G. (eds) Computational Processing of the Portuguese Language. PROPOR 2014. Lecture Notes in Computer Science(), vol 8775. Springer, Cham. https://doi.org/10.1007/978-3-319-09761-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09761-9_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09760-2

  • Online ISBN: 978-3-319-09761-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics