[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Prediction of Molecular Substructure Using Mass Spectral Data Based on Metric Learning

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

Abstract

In this paper, some metric learning algorithms are used to predict the molecular substructure from mass spectral features. Among them are Discriminative Component Analysis (DCA), Large Margin NN Classifier (LMNN), Information-Theoretic Metric Learning (ITML), Principal Component Analysis (PCA), Multidimensional Scaling (MDS) and Isometric Mapping (ISOMAP). The experimental results show metric learning algorithms achieved better prediction performance than the algorithms based on Elucidation distance. Contrasting to other metric learning algorithms, LMNN is the best one in eleven substructure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Denkert, C., Budczies, J., et al.: Mass Spectrometry-Based Metabolic Profiling Reveals Different Metabolite Patterns in Invasive Ovarian Carcinomas and Ovarian Borderline Tumors. Cancer Research 66(22), 10795–10804 (2006)

    Article  Google Scholar 

  2. Horai, H., Arita, M., et al.: Massbank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. Journal of Mass Spectrometry 45(7), 703–714 (2010)

    Article  Google Scholar 

  3. Schauer, N., Steinhauser, D., et al.: GC-MS Libraries for The Rapid Identification of Metabolites in Complex Biological Samples. Febs Letters 579(6), 1332–1337 (2005)

    Article  Google Scholar 

  4. NIST Mass Spectral Search for the NIST/EPA/NIH mass spectral library version 2.0. office of the Standard Reference Data Base, National Institute of Standards and Technology, Gaithersburg, Maryland (2005)

    Google Scholar 

  5. Stein, S.: Mass Spectral Reference Libraries: An Ever-Expanding Resource for Chemical Identification. Analytical Chemistry 84(17), 7274–7282 (2012)

    Article  Google Scholar 

  6. Stein, S.E., Scott, D.R.: Optimization and Testing of Mass Spectral Library Search Algorithms for Compound Identification. Journal of the American Society for Mass Spectrometry 5(9), 859–866 (1994)

    Article  Google Scholar 

  7. McLafferty, F.W., Zhang, M.Y., Stauffer, D.B., Loh, S.Y.: Comparison of Algorithms and Databases for Matching Unknown Mass Spectra. J. Am. Soc. Mass Spectrom. 9(1), 92–95 (1998)

    Article  Google Scholar 

  8. Hertz, H.S., Hites, R.A., Biemann, K.: Identification of Mass Spectra by Computer-Searching a File of Known Spectra. Analytical Chemistry 43(6), 681 (1971)

    Article  Google Scholar 

  9. Koo, I., Zhang, X., Kim, S.: Wavelet- and Fourier-Transform-Based Spectrum Similarity Approaches to Compound Identification in Gas Chromatography/Mass Spectrometry. Anal Chem. 83(14), 5631–5638 (2011)

    Article  Google Scholar 

  10. Kim, S., Koo, I., Wei, X.L., Zhang, X.: A Method of Finding Optimal Weight Factors for Compound Identification in Gas Chromatography-Mass Spectrometry. Bioinformatics 28(8), 1158–1163 (2012)

    Article  Google Scholar 

  11. Varmuza, K., Werther, W.: Mass Spectral Classifiers for Supporting Systematic Structure Elucidation. Journal of Chemical Information and Computer Sciences 36(2), 323–333 (1996)

    Google Scholar 

  12. Yoshida, H., Leardi, R., Funatsu, K., Varmuza, K.: Feature Selection by Genetic Algorithms for Mass Spectral Classifiers. Analytica Chimica Acta 446(1-2), 485–494 (2001)

    Article  Google Scholar 

  13. Eghbaldar, A., Forrest, T.P., Cabrol-Bass, D.: Development of Neural Networks for Identification of Structural Features From Mass Spectral Data. Analytica Chimica Acta 359(3), 283–301 (1998)

    Article  Google Scholar 

  14. Xiong, Q., Zhang, Y.X., Li, M.L.: Computer-Assisted Prediction of Pesticide Substructure Using Mass Spectra. Analytica Chimica Acta 593(2), 199–206 (2007)

    Article  Google Scholar 

  15. He, P., Xu, C.J., Liang, Y.Z., Fang, K.T.: Improving The Classification Accuracy in Chemistry Via Boosting Technique. Chemometrics and Intelligent Laboratory Systems 70(1), 39–46 (2004)

    Article  Google Scholar 

  16. Xing, E.P., Jordan, M.I., Russell, S., Ng, A.: Distance Metric Learning with Application To Clustering with Side-Information. Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  17. Blitzer, J., Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  18. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-Theoretic Metric Learning. In: Proceedings of The 24th International Conference on Machine Learning. ACM (2007)

    Google Scholar 

  19. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning Distance Functions Using Equivalence Relations. In: ICML (2003)

    Google Scholar 

  20. Domeniconi, C., Gunopulos, D., Peng, J.: Large Margin Nearest Neighbor Classifiers. IEEE Transactions on Neural Networks 16(4), 899–909 (2005)

    Article  Google Scholar 

  21. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear Component Analysis As A Kernel Eigenvalue Problem. Neural Computation 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  22. Duchene, J., Leclercq, S.: An Optimal Transformation for Discriminant and Principal Component Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(6), 978–983 (1988)

    Article  MATH  Google Scholar 

  23. MacEachren, A.M., Davidson, J.V.: Sampling and Isometric Mapping of Continuous Geographic Surfaces. The American Cartographer 14(4), 299–320 (1987)

    Article  Google Scholar 

  24. Ding, G.: The Isometric Extension Problem in The Unit Spheres of Lp (Г)(P> 1) Type Spaces. Science in China Series A: Mathematics 46(3), 333–338 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Clements, J.C., Leon, L.: A Fast, Accurate Algorithm for The Isometric Mapping of A Developable Surface. SIAM Journal on Mathematical Analysis 18(4), 966–971 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, ZS., Cao, LL., Zhang, J. (2014). Prediction of Molecular Substructure Using Mass Spectral Data Based on Metric Learning. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics