[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cancer Classification Using Ensemble of Error Correcting Output Codes

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

  • 3500 Accesses

Abstract

We address the microarray dataset based cancer classification problem using a newly proposed ensemble of Error Correcting Output Codes (E-ECOC) method. To the best of our knowledge, it is the first time that ECOC based ensemble has been applied to the microarray dataset classification. Different feature subsets are generated from datasets as inputs for some problem-dependent ECOC coding methods, so as to produce diverse ECOC coding matrixes. Then, the mutual difference degree among the coding matrixes is calculated as an indicator to select coding matrixes with maximum difference. Local difference maximum selection(L-DMS) and global difference maximum selection(G-DMS) are the strategies for picking coding matrixes based on same or different ECOC algorithms. In the experiments, it can be found that E-ECOC algorithm outperforms the individual ECOC and effectively solves the microarray classification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. arXiv preprint cs/9501101 (1995)

    Google Scholar 

  2. Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 120–134 (2010)

    Article  Google Scholar 

  3. Kong, E.B., Dietterich, T.G.: Error-Correcting Output Coding Corrects Bias and Variance. In: ICML 1995 (1995)

    Google Scholar 

  4. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. The Journal of Machine Learning Research 1, 113–141 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Masulli, F., Valentini, G.: Effectiveness of error correcting output codes in multiclass learning problems. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 107–116. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Pujol, O., Radeva, P., Vitria, J.: Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(6), 1007–1012 (2006)

    Article  Google Scholar 

  7. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Machine Learning 47(2-3), 201–233 (2002)

    Article  MATH  Google Scholar 

  8. Bautista, M.Á., et al.: Minimal design of error-correcting output codes. Pattern Recognition Letters 33(6), 693–702 (2012)

    Article  Google Scholar 

  9. García-Pedrajas, N., Fyfe, C.: Evolving output codes for multiclass problems. IEEE Transactions on Evolutionary Computation 12(1), 93–106 (2008)

    Article  Google Scholar 

  10. Lorena, A.C., Carvalho, A.C.: Evolutionary design of multiclass support vector machines. Journal of Intelligent and Fuzzy Systems 18(5), 445–454 (2007)

    MATH  Google Scholar 

  11. Escalera, S., et al.: Subclass problem-dependent design for error-correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 1041–1054 (2008)

    Article  Google Scholar 

  12. Bagheri, M.A., Montazer, G.A., Kabir, E.: A subspace approach to error correcting output codes. Pattern Recognition Letters 34(2), 176–184 (2013)

    Article  Google Scholar 

  13. Bautista, M.Á., et al.: On the design of an ECOC-Compliant Genetic Algorithm. Pattern Recognition 47(2), 865–884 (2014)

    Article  Google Scholar 

  14. Escalera, S., Pujol, O., Radeva, P.: Error-Correcting Ouput Codes Library. J. Mach. Learn. Res. 11, 661–664 (2010)

    Google Scholar 

  15. Escalera, S., Pujol, O., Radeva, P.: Boosted Landmarks of Contextual Descriptors and Forest-ECOC: A novel framework to detect and classify objects in cluttered scenes. Pattern Recognition Letters 28(13), 1759–1768 (2007)

    Article  Google Scholar 

  16. Escalera, S., Pujol, O., Radeva, P.: ECOC-ONE: A novel coding and decoding strategy. In: 18th International Conference on Pattern Recognition, ICPR 2006. IEEE (2006)

    Google Scholar 

  17. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  18. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research 5, 1205–1224 (2004)

    MATH  Google Scholar 

  19. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS (2005)

    Google Scholar 

  20. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185–205 (2005)

    Article  MathSciNet  Google Scholar 

  21. Su, A.I., et al.: Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research 61(20), 7388–7393 (2001)

    Google Scholar 

  22. Perou, C.M., et al.: Molecular portraits of human breast tumours. Nature 406(6797), 747–752 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zeng, Z., Liu, KH., Wang, Z. (2014). Cancer Classification Using Ensemble of Error Correcting Output Codes. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics