Abstract
We address the microarray dataset based cancer classification problem using a newly proposed ensemble of Error Correcting Output Codes (E-ECOC) method. To the best of our knowledge, it is the first time that ECOC based ensemble has been applied to the microarray dataset classification. Different feature subsets are generated from datasets as inputs for some problem-dependent ECOC coding methods, so as to produce diverse ECOC coding matrixes. Then, the mutual difference degree among the coding matrixes is calculated as an indicator to select coding matrixes with maximum difference. Local difference maximum selection(L-DMS) and global difference maximum selection(G-DMS) are the strategies for picking coding matrixes based on same or different ECOC algorithms. In the experiments, it can be found that E-ECOC algorithm outperforms the individual ECOC and effectively solves the microarray classification problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. arXiv preprint cs/9501101 (1995)
Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 120–134 (2010)
Kong, E.B., Dietterich, T.G.: Error-Correcting Output Coding Corrects Bias and Variance. In: ICML 1995 (1995)
Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. The Journal of Machine Learning Research 1, 113–141 (2001)
Masulli, F., Valentini, G.: Effectiveness of error correcting output codes in multiclass learning problems. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 107–116. Springer, Heidelberg (2000)
Pujol, O., Radeva, P., Vitria, J.: Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(6), 1007–1012 (2006)
Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Machine Learning 47(2-3), 201–233 (2002)
Bautista, M.Á., et al.: Minimal design of error-correcting output codes. Pattern Recognition Letters 33(6), 693–702 (2012)
García-Pedrajas, N., Fyfe, C.: Evolving output codes for multiclass problems. IEEE Transactions on Evolutionary Computation 12(1), 93–106 (2008)
Lorena, A.C., Carvalho, A.C.: Evolutionary design of multiclass support vector machines. Journal of Intelligent and Fuzzy Systems 18(5), 445–454 (2007)
Escalera, S., et al.: Subclass problem-dependent design for error-correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 1041–1054 (2008)
Bagheri, M.A., Montazer, G.A., Kabir, E.: A subspace approach to error correcting output codes. Pattern Recognition Letters 34(2), 176–184 (2013)
Bautista, M.Á., et al.: On the design of an ECOC-Compliant Genetic Algorithm. Pattern Recognition 47(2), 865–884 (2014)
Escalera, S., Pujol, O., Radeva, P.: Error-Correcting Ouput Codes Library. J. Mach. Learn. Res. 11, 661–664 (2010)
Escalera, S., Pujol, O., Radeva, P.: Boosted Landmarks of Contextual Descriptors and Forest-ECOC: A novel framework to detect and classify objects in cluttered scenes. Pattern Recognition Letters 28(13), 1759–1768 (2007)
Escalera, S., Pujol, O., Radeva, P.: ECOC-ONE: A novel coding and decoding strategy. In: 18th International Conference on Pattern Recognition, ICPR 2006. IEEE (2006)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)
Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research 5, 1205–1224 (2004)
He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS (2005)
Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185–205 (2005)
Su, A.I., et al.: Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research 61(20), 7388–7393 (2001)
Perou, C.M., et al.: Molecular portraits of human breast tumours. Nature 406(6797), 747–752 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zeng, Z., Liu, KH., Wang, Z. (2014). Cancer Classification Using Ensemble of Error Correcting Output Codes. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-09330-7_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09329-1
Online ISBN: 978-3-319-09330-7
eBook Packages: Computer ScienceComputer Science (R0)